This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.
Mots clés : Allen Cahn equation, mean curvature flow, boundary constraints, penalization technique, gamma-convergence, Fourier splitting method
@article{M2AN_2012__46_6_1509_0, author = {Bretin, Elie and Perrier, Valerie}, title = {Phase field method for mean curvature flow with boundary constraints}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1509--1526}, publisher = {EDP-Sciences}, volume = {46}, number = {6}, year = {2012}, doi = {10.1051/m2an/2012014}, mrnumber = {2996338}, zbl = {1272.65057}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012014/} }
TY - JOUR AU - Bretin, Elie AU - Perrier, Valerie TI - Phase field method for mean curvature flow with boundary constraints JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1509 EP - 1526 VL - 46 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012014/ DO - 10.1051/m2an/2012014 LA - en ID - M2AN_2012__46_6_1509_0 ER -
%0 Journal Article %A Bretin, Elie %A Perrier, Valerie %T Phase field method for mean curvature flow with boundary constraints %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1509-1526 %V 46 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012014/ %R 10.1051/m2an/2012014 %G en %F M2AN_2012__46_6_1509_0
Bretin, Elie; Perrier, Valerie. Phase field method for mean curvature flow with boundary constraints. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1509-1526. doi : 10.1051/m2an/2012014. http://www.numdam.org/articles/10.1051/m2an/2012014/
[1] Variational models for phase transitions, an approach via γ-convergence, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 95-114. | MR | Zbl
,[2] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085-1095.
and ,[3] Mean curvature flow with obstacle. Technical Report Preprint (2011). | Numdam | MR | Zbl
, and ,[4] Geometric evolution problems, distance function and viscosity solutions, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 5-93. | MR | Zbl
,[5] Solutions de viscosité des équations de Hamilton-Jacobi, in Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris 17 (1994). | MR | Zbl
,[6] On the parametric finite element approximation of evolving hypersurfaces in r3. J. Comput. Phys. 227 (2008) 4281-4307. | MR | Zbl
, and ,[7] A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109 (2008) 1-44. | MR | Zbl
, and ,[8] Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model. 6 (2009) 33-49. | MR | Zbl
, and ,[9] Variational approximation of functionals with curvatures and related properties. J. Convex Anal. 4 (1997) 91-108. | MR | Zbl
,[10] Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ. 8 (1995) 735-752. | MR | Zbl
and ,[11] Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996) 537-566. | MR | Zbl
and ,[12] Design-dependent loads in topology optimization. ESAIM : COCV 9 (2003) 19-48. | Numdam | MR | Zbl
and ,[13] Instabilité de Forme en Croissance Cristalline. Ph.D. thesis, University Joseph Fourier, Grenoble (2008).
,[14] A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci. 34 (2011) 1157-1180. | MR | Zbl
and ,[15] Méthode de champ de phase et mouvement par courbure moyenne. Ph.D. thesis, Institut National Polytechnique de Grenoble (2009).
,[16] Spectral methods for partial differential equations in irregular domains : The spectral smoothed boundary method. SIAM J. Sci. Comput. 28 (2006) 886-900. | MR | Zbl
, and ,[17] Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96 (1992) 116-141. | MR | Zbl
,[18] Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108 (1998) 147-158. | Zbl
and ,[19] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn Acad. Ser. A 65 (1989) 207-210. | MR | Zbl
, and ,[20] Convergence of numerical solutions to the Allen-Cahn equation. Appl. Anal. 69 (1998) 47-56. | MR | Zbl
, , and ,[21] User's guide to viscosity solutions of second order partial differential equations. Bull Amer. Math. Soc. 27 (1992) 1-68. | MR | Zbl
, and ,[22] Discrete anisotropic curvature flow of graphs. ESAIM : M2AN 33 (1999) 1203-1222. | Numdam | MR | Zbl
and ,[23] Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139-232. | MR | Zbl
, and ,[24] Motion of level sets by mean curvature I. J. Differ. Geom. 33 (1991) 635-681. | MR | Zbl
and ,[25] Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45 (1992) 1097-1123. | MR | Zbl
, and ,[26] Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33-65. | MR | Zbl
and ,[27] Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73 (2004) 541-567. | MR | Zbl
and ,[28] A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput. 24 (2005) 121-146. | MR | Zbl
and ,[29] An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl. 60 (2010) 1591-1606. | MR | Zbl
, , and ,[30] Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526-529. | MR | Zbl
and ,[31] Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. | MR | Zbl
and ,[32] Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York. Appl. Math. Sci. (2002). | MR | Zbl
and ,[33] Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York (2003). | MR | Zbl
and ,[34] Fronts propagating with curvature-dependent speed : algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49. | MR | Zbl
and ,[35] Minimizers and gradient flows for singularly perturbed bi-stable potentials with a dirichlet condition. Proc. R. Soc. London 429 (1990) 505-532. | MR | Zbl
, and ,[36] An efficient algorithm for computing anisotropic evolution by mean curvature, in Curvature flows and related topics, edited by Levico, 1994. Gakuto Int. Ser. Math. Sci. Appl. 5 (1995) 199-213. | MR | Zbl
,[37] On a modified conjecture of De Giorgi. Math. Z. 254 (2006) 675-714. | Zbl
and ,[38] Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom. 81 (2009) 437-456. | MR | Zbl
,[39] The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37 (2010) 275-302. | MR | Zbl
,[40] Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Disc. Cont. Dyn. Systems 31 (2011) 1427-1451. | MR | Zbl
,[41] Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Technical Report, arXiv:1107.5341v1 (2011). Submitted.
, and ,[42] Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31 (2009) 3042-3063. | MR | Zbl
and ,Cité par Sources :