Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 841-874.

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

DOI : 10.1051/m2an/2011071
Classification : 35L40, 35L50, 35Q41, 65M06, 65M12, 65M15, 81Q05
Mots-clés : existence, uniqueness, finite difference methods, error estimates
@article{M2AN_2012__46_4_841_0,
     author = {Bournaveas, Nikolaos and Zouraris, Georgios E.},
     title = {Theory and numerical approximations for a nonlinear 1 + 1 {Dirac} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {841--874},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {4},
     year = {2012},
     doi = {10.1051/m2an/2011071},
     mrnumber = {2891472},
     zbl = {1274.65232},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2011071/}
}
TY  - JOUR
AU  - Bournaveas, Nikolaos
AU  - Zouraris, Georgios E.
TI  - Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 841
EP  - 874
VL  - 46
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2011071/
DO  - 10.1051/m2an/2011071
LA  - en
ID  - M2AN_2012__46_4_841_0
ER  - 
%0 Journal Article
%A Bournaveas, Nikolaos
%A Zouraris, Georgios E.
%T Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 841-874
%V 46
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2011071/
%R 10.1051/m2an/2011071
%G en
%F M2AN_2012__46_4_841_0
Bournaveas, Nikolaos; Zouraris, Georgios E. Theory and numerical approximations for a nonlinear 1 + 1 Dirac system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 841-874. doi : 10.1051/m2an/2011071. http://www.numdam.org/articles/10.1051/m2an/2011071/

[1] A. Alvarez, Linearized Crank-Nicholson scheme for nonlinear Dirac equations. J. Comput. Phys. 99 (1992) 348-350. | MR | Zbl

[2] A. Alvarez and B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model. Phys. Lett. A 86 (1981) 327-332. | MR

[3] A. Alvarez, Pen-Yu Kuo and L. Vazquez, The numerical study of a nonlinear one-dimensional Dirac equation. Appl. Math. Comput. 13 (1983) 1-15. | MR | Zbl

[4] N. Bournaveas, Local and global solutions for a nonlinear Dirac system. Advances Differential Equations 9 (2004) 677-698. | MR | Zbl

[5] N. Bournaveas, Local well-posedness for a nonlinear Dirac equation in spaces of almost critical dimension. Discrete Contin. Dyn. Syst. Ser. A 20 (2008) 605-616. | MR | Zbl

[6] N. Boussaid, P. D'Ancona and L. Fanelli, Virial identity and weak dispersion for the magnetic Dirac equation. J. Math. Pures Appl. 95 (2011) 137-150. | MR | Zbl

[7] J. De Frutos, Estabilidad y convergencia de esquemas numericos para sistemas de Dirac no lineales. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingenieria 5 (1989) 185-202.

[8] J. De Frutos and J.M. Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems. J. Comput. Phys. 83 (1989) 407-423. | MR | Zbl

[9] V. Delgado, Global solutions of the Cauchy problem for the classical Coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension. Proc. Amer. Math. Soc. 69 (1978) 289-296. | MR | Zbl

[10] T. Dupont, Galerkin methods for first order hyperbolics : an example. SIAM J Numer. Anal. 10 (1973) 890-899. | MR | Zbl

[11] R.T. Glassey, On one-dimensional coupled Dirac equations. Trans. Amer. Math. Soc. 231 (1977) 531-539. | MR | Zbl

[12] B.-Y. Guo, J. Shen and C.-L. Xu, Spectral and pseudospectral approximations using Hermite functions : application to the Dirac equation. Adv. Comput. Math. 19 (2003) 35-55. | MR | Zbl

[13] J. Hong and C. Li, Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211 (2006) 448-472. | MR | Zbl

[14] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag (1997). | MR | Zbl

[15] S. Jiménez, Derivation of the discrete conservation laws for a family of finite difference schemes. Appl. Math. Comput. 64 (1994) 13-45. | MR | Zbl

[16] T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967) 508-520. | MR | Zbl

[17] S. Machihara, One dimensional Dirac equation with quadratic nonlinearities. Discrete Contin. Dyn. Syst. Ser. A 13 (2005) 277-290. | MR | Zbl

[18] S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension. Commun. Contemp. Math. 9 (2007) 421-435. | MR | Zbl

[19] S. Machihara, M. Nakamura and T. Ozawa, Small global solutions for nonlinear Dirac equations. Differential Integral Equations 17 (2004) 623-636. | MR | Zbl

[20] S. Machihara, M. Nakamura, K. Nakanishi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219 (2005) 1-20. | MR | Zbl

[21] S. Machihara, K. Nakanishi and K. Tsugawa, Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math. 50 (2010) 403-451. | MR | Zbl

[22] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci. 53 (1984). | MR | Zbl

[23] E. Salusti and A. Tesei, On a semi-group approach to quantum field equations. Nuovo Cimento A 2 (1971) 122-138. | MR

[24] I. E. Segal, Non-linear semi-groups. Ann. of Math. 78 (1963) 339-364. | MR | Zbl

[25] S. Shao and H. Tang, Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 623-640. | MR | Zbl

[26] B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, Heidelberg (2010). | MR | Zbl

[27] H. Wang and H. Tang, An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J. Comput. Phys. 222 (2007) 176-193. | MR | Zbl

[28] G.E. Zouraris, On the convergence of a linear conservative two-step finite element method for the nonlinear Schrödinger equation. ESAIM : M2AN 35 (2001) 389-405. | Numdam | MR | Zbl

Cité par Sources :