The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let f be a bandlimited signal that is sampled on a collection of N interleaved grids {kT + Tn} k ∈ Z with offsets \hbox{} { T n } n = 1 N ⊂ [ 0 ,T ] . If the offsets Tn are chosen independently and uniformly at random from [0,T] and if the sample values of f are quantized with a first order Sigma-Delta algorithm, then with high probability the quantization error \hbox{} | f ( t ) - 􏽥 f ( t ) | is at most of order N-1log N.
Mots-clés : analog-to-digital conversion, bandlimited signals, interleaved sampling, random sampling, sampling expansions, sigma-delta quantization
@article{M2AN_2012__46_3_605_0, author = {Powell, Alexander M. and Tanner, Jared and Wang, Yang and Y{\i}lmaz, \"Ozg\"ur}, title = {Coarse quantization for random interleaved sampling of bandlimited signals}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {605--618}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/m2an/2011057}, mrnumber = {2877367}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011057/} }
TY - JOUR AU - Powell, Alexander M. AU - Tanner, Jared AU - Wang, Yang AU - Yılmaz, Özgür TI - Coarse quantization for random interleaved sampling of bandlimited signals JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 605 EP - 618 VL - 46 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011057/ DO - 10.1051/m2an/2011057 LA - en ID - M2AN_2012__46_3_605_0 ER -
%0 Journal Article %A Powell, Alexander M. %A Tanner, Jared %A Wang, Yang %A Yılmaz, Özgür %T Coarse quantization for random interleaved sampling of bandlimited signals %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 605-618 %V 46 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011057/ %R 10.1051/m2an/2011057 %G en %F M2AN_2012__46_3_605_0
Powell, Alexander M.; Tanner, Jared; Wang, Yang; Yılmaz, Özgür. Coarse quantization for random interleaved sampling of bandlimited signals. ESAIM: Mathematical Modelling and Numerical Analysis , Special volume in honor of Professor David Gottlieb. Numéro spécial, Tome 46 (2012) no. 3, pp. 605-618. doi : 10.1051/m2an/2011057. http://www.numdam.org/articles/10.1051/m2an/2011057/
[1] Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36 (2005) 773-795. | MR | Zbl
and ,[2] Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52 (2006) 1990-2005. | Zbl
, and ,[3] Reconstructing a bandlimited function from very coarsely quantized data : A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158 (2003) 679-710. | MR | Zbl
and ,[4] Order Statistics, 3th edition. John Wiley & Sons, Hoboken, NJ (2003). | Zbl
and ,[5] Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab. 9 (1981) 860-867. | MR | Zbl
,[6] A bandlimited function simulating a duration-limited one, in Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), Internationale Schriftenreihe zur Numerischen Mathematik 65. Birkhäuser, Basel (1984) 355-362. | MR | Zbl
, and ,[7] Approximating a bandlimited function using very coarsely quantized data : improved error estimates in sigma-delta modulation. J. Amer. Math. Soc. 17 (2004) 229-242. | MR | Zbl
,[8] Optimum kernels for oversampled signals. J. Acoust. Soc. Amer. 92 (1992) 1172-1173.
,[9] Random sampling of sparse trigonometric polynomials II. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8 (2008) 737-763. | MR | Zbl
and ,[10] Efficient evaluation of oversampled functions. J. Comput. Appl. Math. 14 (1986) 303-309. | MR | Zbl
,[11] Optimum oversampling. J. Acoust. Soc. Amer. 86 (1989) 1805-1812. | MR
,[12] Entropy and maximal spacings for random partitions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41 (1977/78) 341-352. | MR | Zbl
,[13] Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal. 44 (2006) 1073-1094. | MR | Zbl
and ,[14] Time-interleaved analog-to-digital converters : Status and future directions. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 3386-3389.
and ,[15] Efficient calibration of time-interleaved adcs via separable nonlinear least squares. Technical Report, Dept. of Mathematics, University of California at Davis. http://www.math.ucdavis.edu/-strotimer/papers/2006/adc.pdf
and ,[16] Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmonic Anal. 14 (2003) 107-132. | MR | Zbl
,[17] Advances in Shannon's sampling theory. CRC Press, Boca Raton (1993). | MR | Zbl
,Cité par Sources :