We study order-adaptive implementations of Hermite methods for hyperbolic and singularly perturbed parabolic initial value problems. Exploiting the facts that Hermite methods allow the degree of the local polynomial representation to vary arbitrarily from cell to cell and that, for hyperbolic problems, each cell can be evolved independently over a time-step determined only by the cell size, a relatively straightforward method is proposed. Its utility is demonstrated on a number of model problems posed in 1+1 and 2+1 dimensions.
@article{M2AN_2012__46_3_545_0, author = {Chen, Ronald and Hagstrom, Thomas}, title = {$P$-adaptive {Hermite} methods for initial value problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {545--557}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/m2an/2011050}, zbl = {1272.65077}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011050/} }
TY - JOUR AU - Chen, Ronald AU - Hagstrom, Thomas TI - $P$-adaptive Hermite methods for initial value problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 545 EP - 557 VL - 46 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011050/ DO - 10.1051/m2an/2011050 LA - en ID - M2AN_2012__46_3_545_0 ER -
%0 Journal Article %A Chen, Ronald %A Hagstrom, Thomas %T $P$-adaptive Hermite methods for initial value problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 545-557 %V 46 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011050/ %R 10.1051/m2an/2011050 %G en %F M2AN_2012__46_3_545_0
Chen, Ronald; Hagstrom, Thomas. $P$-adaptive Hermite methods for initial value problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 3, pp. 545-557. doi : 10.1051/m2an/2011050. http://www.numdam.org/articles/10.1051/m2an/2011050/
[1] Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 553-575. | MR | Zbl
,[2] Dispersive and dissipative behavior of high-order discontinuous Galerkin finite element methods. J. Comput. Phys. 198 (2004) 106-130. | MR | Zbl
,[3] Experiments with Hermite methods for simulating compressible flows : Runge-Kutta time-stepping and absorbing layers, in 13th AIAA/CEAS Aeroacoustics Conference. AIAA (2007).
and ,[4] Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968) 232-256. | MR | Zbl
, and ,[5] Polynomials and Polynomial Inequalities. Springer-Verlag, New York (1995). | MR | Zbl
and ,[6] Interpolation and Approximation. Dover Publications, New York (1975). | MR | Zbl
,[7] Computing with hp-Adaptive Finite Elements. Applied Mathematics & Nonlinear Science, Chapman & Hall/CRC, Boca Raton (2007). | Zbl
, , , , and ,[8] A high-order Hermite compressible Navier-Stokes solver. Master's thesis, The University of New Mexico (2003).
,[9] On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12 (1975) 509-528. | MR | Zbl
,[10] Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75 (2006) 595-630. | MR | Zbl
, and ,[11] Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977). | Zbl
and ,[12] The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56 (1991) 565-588. | MR | Zbl
and ,[13] Evaluating Derivatives : Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000). | MR | Zbl
,[14] Fast numerical solution of nonlinear Volterra convolutional equations. SIAM J. Sci. Statist. Comput. 6 (1985) 532-541. | MR | Zbl
, and ,[15] Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | MR | Zbl
and ,[16] Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24 (1972) 199-215. | MR
and ,[17] An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys. 227 (2008) 5649-5670. | MR | Zbl
, and ,[18] Taming the CFL number for discontinuous Galerkin methods on structured meshes. SIAM J. Numer. Anal. 46 (2008) 3151-3180. | MR | Zbl
and ,[19] The eigenvalues of second-order differentiation matrices. SIAM J. Numer. Anal. 25 (1988) 1279-1298. | MR | Zbl
and ,Cité par Sources :