A numerical minimization scheme for the complex Helmholtz equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 1, pp. 39-57.

We use the work of Milton, Seppecher, and Bouchitté on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate the method with numerical experiments.

DOI : 10.1051/m2an/2011017
Classification : 65N30, 35A15
Mots-clés : variational methods, Helmholtz equation, finite element methods
@article{M2AN_2012__46_1_39_0,
     author = {Richins, Russell B. and Dobson, David C.},
     title = {A numerical minimization scheme for the complex {Helmholtz} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {39--57},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     doi = {10.1051/m2an/2011017},
     mrnumber = {2846366},
     zbl = {1272.65095},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2011017/}
}
TY  - JOUR
AU  - Richins, Russell B.
AU  - Dobson, David C.
TI  - A numerical minimization scheme for the complex Helmholtz equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 39
EP  - 57
VL  - 46
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2011017/
DO  - 10.1051/m2an/2011017
LA  - en
ID  - M2AN_2012__46_1_39_0
ER  - 
%0 Journal Article
%A Richins, Russell B.
%A Dobson, David C.
%T A numerical minimization scheme for the complex Helmholtz equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 39-57
%V 46
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2011017/
%R 10.1051/m2an/2011017
%G en
%F M2AN_2012__46_1_39_0
Richins, Russell B.; Dobson, David C. A numerical minimization scheme for the complex Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 1, pp. 39-57. doi : 10.1051/m2an/2011017. http://www.numdam.org/articles/10.1051/m2an/2011017/

[1] O. Axelsson and V.A. Barker, Finite element solution of boundary value problems, theory and computation. SIAM, Philidelphia, PA (2001). | MR | Zbl

[2] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York, NY (1991). | MR | Zbl

[3] A.V. Cherkaev and L.V. Gibiansky, Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys. 35 (1994) 127-145. | MR | Zbl

[4] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix pencils. SIAM J. Num. Anal. 20 (1983) 599-610. | MR | Zbl

[5] L.C. Evans, Partial differential equations. American Mathematical Society, Providence, RI (1998). | MR | Zbl

[6] I. Harari, M. Slavutin and E. Turkel, Analytical and numerical studies of a finite element PML for the Helmholtz equation. J. Comp. Acoust. 8 (2000) 121-137. | MR

[7] G.W. Milton and J.R. Willis, On modifications of newton's second law and linear continuum elastodynamics. Proc. R. Soc. A 463 (2007) 855-880. | MR

[8] G.W. Milton and J.R. Willis, Minimum variational principles for time-harmonic waves in a dissipative medium and associated variational principles of Hashin-Shtrikman type. Proc. R. Soc. Lond. 466 (2010) 3013-3032. | MR | Zbl

[9] G.W. Milton, P. Seppecher and G. Bouchitté, Minimization variational principles for acoustics, elastodynamics, and electromagnetism in lossy inhomogeneous bodies at fixed frequency. Proc. R. Soc. A 465 (2009) 367-396. | MR | Zbl

[10] V.V. Tyutekin and Y.V. Tyutekin, Sound absorbing media with two types of acoustic losses. Acoust. Phys. 56 (2010) 33-36.

Cité par Sources :