In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with optimal approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the method, and the incompressible Navier-Stokes equations, which provide a more realistic application. An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties are provided.
Mots-clés : cell centered Galerkin, finite volumes, discontinuous Galerkin, heterogeneous anisotropic diffusion, incompressible Navier-Stokes equations
@article{M2AN_2012__46_1_111_0, author = {Di Pietro, Daniele A.}, title = {Cell centered {Galerkin} methods for diffusive problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {111--144}, publisher = {EDP-Sciences}, volume = {46}, number = {1}, year = {2012}, doi = {10.1051/m2an/2011016}, mrnumber = {2846369}, zbl = {1279.65125}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011016/} }
TY - JOUR AU - Di Pietro, Daniele A. TI - Cell centered Galerkin methods for diffusive problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 111 EP - 144 VL - 46 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011016/ DO - 10.1051/m2an/2011016 LA - en ID - M2AN_2012__46_1_111_0 ER -
%0 Journal Article %A Di Pietro, Daniele A. %T Cell centered Galerkin methods for diffusive problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 111-144 %V 46 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011016/ %R 10.1051/m2an/2011016 %G en %F M2AN_2012__46_1_111_0
Di Pietro, Daniele A. Cell centered Galerkin methods for diffusive problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 1, pp. 111-144. doi : 10.1051/m2an/2011016. http://www.numdam.org/articles/10.1051/m2an/2011016/
[1] Discretization on unstructured grids for inhomogeneous, anisotropic media, Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700-1716. | MR | Zbl
, , and ,[2] Discretization on unstructured grids for inhomogeneous, anisotropic media, Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717-1736. | MR | Zbl
, , and ,[3] A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differential Equations 24 (2008) 1329-1360. | MR | Zbl
, , and ,[4] The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: M2AN 44 (2010) 597-625. | Numdam | MR | Zbl
, and ,[5] An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1-29. | MR
, , and ,[6] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[7] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and ,[8] Analyse fonctionnelle appliquée. Presses Universitaires de France, Paris (1987). | Zbl
,[9] A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230 (2011) 572-585. | MR | Zbl
and ,[10] The mathematical theory of finite element methods, Texts in Applied Mathematics, 3th edition 15. Springer, New York (2008). | MR | Zbl
and ,[11] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872-1896. | MR | Zbl
, and ,[12] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533-1553. | MR | Zbl
, and ,[13] Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16 (2000) 365-378. | MR | Zbl
, , , and ,[14] Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 4 (2009) 827-855. | MR | Zbl
and ,[15] Continuous interior penalty -finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119-1140. | MR | Zbl
and ,[16] A domain decomposition method for partial differential equations with non-negative form based on interior penalties. SIAM J. Numer. Anal. 44 (2006) 1612-1638. | MR | Zbl
and ,[17] Geometrical interpretation of the multi-point flux approximation L-method. Internat. J. Numer. Methods Fluids 60 (2009) 1173-1199. | MR | Zbl
, and ,[18] The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. | MR | Zbl
,[19] Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Internat. J. Numer. Methods Fluids 55 (2007) 793-813. | MR | Zbl
,[20] Cell centered Galerkin methods. C. R. Acad. Sci. Paris, Sér. I 348 (2010) 31-34. | MR | Zbl
,[21] A compact cell-centered Galerkin method with subgrid stabilization. C. R. Acad. Sci. Paris, Sér. I 349 (2011) 93-98. | MR | Zbl
,[22] Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. 79 (2010) 1303-1330. | MR
and ,[23] Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions. Numer. Methods Partial Differential Equations (2011). Published online, DOI: 10.1002/num.20675. | MR | Zbl
and ,[24] Mathematical aspects of discontinuous Galerkin methods, Mathematics and Applications 69. Springer-Verlag, Berlin (2011). In press. | Zbl
and ,[25] Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal. 46 (2008) 805-831. | MR | Zbl
, and ,[26] A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35-71. | MR | Zbl
and ,[27] A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265-295. | MR | Zbl
, , and ,[28] A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery. D Røros, Norway (1994).
and ,[29] Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2 (1998) 259-290. | MR | Zbl
and ,[30] Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, NY (2004). | MR | Zbl
and ,[31] Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Internat. J. Numer. Methods Fluids 48 (2005) 747-774. | Zbl
, and ,[32] The Finite Volume Method, edited by Ph. Charlet and J.L. Lions. North Holland (2000). | MR | Zbl
, and ,[33] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009-1043. | MR | Zbl
, and ,[34] Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | MR | Zbl
, and ,[35] Singularities in Boundary Value Problems. Masson, Paris (1992). | MR | Zbl
,[36] Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | MR | Zbl
and ,[37] Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. John Wiley & Sons (2008) 659-692. | MR | Zbl
and ,[38] On the Poisson equation with intersecting interfaces. Appl. Anal. 4 (1974/75) 101-129. Collection of articles dedicated to Nikolai Ivanovich Muskhelishvili. | MR | Zbl
,[39] Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44 (1948) 58-62. | Zbl
,[40] General interface problems. I, II. Math. Methods Appl. Sci. 17 (1994) 395-429, 431-450. | MR | Zbl
and ,[41] On Dirichlet problems using subspaces with nearly zero boundary conditions, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972). Academic Press, New York (1972) 603-627. | MR | Zbl
,[42] Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New trends and applications, edited by S.R. Idelsohn, E. Oñate and E.N. Dvorkin. Barcelona, Spain (1998) 1-6. Centro Internacional de Métodos Numéricos en Ingeniería. | MR | Zbl
,[43] Navier-Stokes Equations, Studies in Mathematics and its Applications 2. North-Holland Publishing Co., Amsterdam, revised edition (1979). Theory and numerical analysis, with an appendix by F. Thomasset. | MR | Zbl
,Cité par Sources :