In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.
Mots-clés : laser surface hardening of steel, semi-linear parabolic equation, optimal control, error estimates, discontinuous Galerkin finite element method
@article{M2AN_2011__45_6_1081_0, author = {Nupur, Gupta and Neela, Nataraj}, title = {An $hp${-Discontinuous} {Galerkin} {Method} for the {Optimal} {Control} {Problem} of {Laser} {Surface} {Hardening} of {Steel}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1081--1113}, publisher = {EDP-Sciences}, volume = {45}, number = {6}, year = {2011}, doi = {10.1051/m2an/2011013}, zbl = {1269.65064}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011013/} }
TY - JOUR AU - Nupur, Gupta AU - Neela, Nataraj TI - An $hp$-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 1081 EP - 1113 VL - 45 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011013/ DO - 10.1051/m2an/2011013 LA - en ID - M2AN_2011__45_6_1081_0 ER -
%0 Journal Article %A Nupur, Gupta %A Neela, Nataraj %T An $hp$-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 1081-1113 %V 45 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011013/ %R 10.1051/m2an/2011013 %G en %F M2AN_2011__45_6_1081_0
Nupur, Gupta; Neela, Nataraj. An $hp$-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1081-1113. doi : 10.1051/m2an/2011013. http://www.numdam.org/articles/10.1051/m2an/2011013/
[1] Convergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim. 20 (1999) 805-824. | MR | Zbl
, and ,[2] An interior penalty method for discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[3] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and ,[4] The finite element method with penalty. Math. Comput. 27 (1973) 221-228. | MR | Zbl
,[5] Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions R03038 (2003).
, and ,[6] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[7] Error estimates for spatial discrete approximation of semilinear parabolic equation with initial data of low regularity. Math. Comput. 53 187 (1989) 25-41. | MR | Zbl
, , ,[8] Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys. 58. Springer-Verlag, Berlin (1976). | MR
and ,[9] Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR | Zbl
and ,[10] Adaptive finite element methods for parabolic problems II: optimal error estimates in and . SIAM J. Numer. Anal. 32 (1995) 706-740. | MR | Zbl
and ,[11] Partial Differential Equations. American Mathematics Society, Providence, Rhode Island (1998). | Zbl
,[12] Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45 (2007) 163-192. | MR | Zbl
, and ,[13] T. Gudi, N. Nataraj and A.K. Pani, hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109 (2008) 233-268. | MR | Zbl
[14] An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type. Math. Comput. 77 (2008) 731-756. | MR | Zbl
, and ,[15] An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model. 7 (2010). | MR
, and ,[16] A priori error estimates for the optimal control of laser surface hardening of steel. Paper communicated. | Zbl
, and ,[17] A mathematical model for the phase transitions in eutectoid carbon steel. IMA J. Appl. Math. 54 (1995) 31-57. | MR | Zbl
,[18] Irreversible phase transitions in steel. Math. Methods Appl. Sci. 20 (1997) 59-77. | MR | Zbl
,[19] Numerical simulation of surface hardening of steel. Int. J. Numer. Meth. Heat Fluid Flow 9 (1999) 705-724. | Zbl
and ,[20] Optimal control of laser hardening. Adv. Math. Sci. 8 (1998) 911-928. | MR | Zbl
and ,[21] Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 37 (2003) 1003-1028. | MR | Zbl
and ,[22] PID-control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol. 14 (2006) 896-904.
and ,[23] Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. | MR | Zbl
, and ,[24] A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element methods for semilinear parabolic problems. Report No. 03/11, Oxford university computing laboratory (2003). | Zbl
[25] Poincaré-type inequalities for broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003).
and ,[26] A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32 (1984) 137-146.
and ,[27] Mathematical modelling in the technology of laser treatments of materials. Surveys Math. Indust. 4 (1994) 85-149. | MR | Zbl
and ,[28] A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47 (2007) 1150-1177. | MR | Zbl
, and ,[29] Über ein Variationprinzip zur Lösung Dirichlet-Problemen bei Verwen-dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | MR | Zbl
,[30] A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491-519. | MR | Zbl
, and ,[31] Review of error estimation for discontinuous Galerkin method. TICAM-report 00-27 (2000).
, and ,[32] Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Mathematics 35. SIAM 2008. ISBN: 978-0-898716-56-6. | MR | Zbl
,[33] A discontinuous Galerkin method applied to nonlinear parabolic equations. The Center for Substance Modeling, TICAM, The University of Texas, Austin TX 78712, USA. | Zbl
and ,[34] A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902-931. | MR | Zbl
, and ,[35] Galerkin finite element methods for parabolic problems. Springer (1997). | Zbl
,[36] Non-linear conjugate gradient method for the optimal control of laser surface hardening, Optim. Methods Softw. 19 (2004) 179-199. | MR | Zbl
,[37] An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR | Zbl
,Cité par Sources :