The aim of this paper is to analyze a low order finite element method for a stiffened plate. The plate is modeled by Reissner-Mindlin equations and the stiffener by Timoshenko beams equations. The resulting problem is shown to be well posed. In the case of concentric stiffeners it decouples into two problems, one for the in-plane plate deformation and the other for the bending of the plate. The analysis and discretization of the first one is straightforward. The second one is shown to have a solution bounded above and below independently of the thickness of the plate. A discretization based on DL3 finite elements combined with ad-hoc elements for the stiffener is proposed. Optimal order error estimates are proved for displacements, rotations and shear stresses for the plate and the stiffener. Numerical tests are reported in order to assess the performance of the method. These numerical computations demonstrate that the error estimates are independent of the thickness, providing a numerical evidence that the method is locking-free.
Mots-clés : stiffened plates, Reissner-Mindlin model, Timoshenko beam, finite elements, error estimates, locking
@article{M2AN_2012__46_2_291_0, author = {Dur\'an, Ricardo and Rodr{\'\i}guez, Rodolfo and Sanhueza, Frank}, title = {A finite element method for stiffened plates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {291--315}, publisher = {EDP-Sciences}, volume = {46}, number = {2}, year = {2012}, doi = {10.1051/m2an/2011011}, mrnumber = {2855644}, zbl = {1272.74399}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011011/} }
TY - JOUR AU - Durán, Ricardo AU - Rodríguez, Rodolfo AU - Sanhueza, Frank TI - A finite element method for stiffened plates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 291 EP - 315 VL - 46 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011011/ DO - 10.1051/m2an/2011011 LA - en ID - M2AN_2012__46_2_291_0 ER -
%0 Journal Article %A Durán, Ricardo %A Rodríguez, Rodolfo %A Sanhueza, Frank %T A finite element method for stiffened plates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 291-315 %V 46 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011011/ %R 10.1051/m2an/2011011 %G en %F M2AN_2012__46_2_291_0
Durán, Ricardo; Rodríguez, Rodolfo; Sanhueza, Frank. A finite element method for stiffened plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 2, pp. 291-315. doi : 10.1051/m2an/2011011. http://www.numdam.org/articles/10.1051/m2an/2011011/
[1] Discretization by finite element of a model parameter dependent problem. Numer. Math. 37 (1981) 405-421. | EuDML | MR | Zbl
,[2] A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276-1290. | MR | Zbl
and ,[3] Mixed finite element methods for elastic rods of arbitrary geometry. Numer. Math. 64 (1993) 13-43. | EuDML | MR | Zbl
and ,[4] The MITC7 and MITC9 plate bending elements, Comput. Struct. 32 (1984) 797-814. | Zbl
, and ,[5] Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR | Zbl
and ,[6] Domain decomposition method and elastic multi-structures: the stiffened plate problem. Numer. Math. 66 (1993) 181-197. | EuDML | MR | Zbl
,[7] On the mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58 (1992) 561-573. | MR | Zbl
and ,[8] Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). | MR | Zbl
and ,[9] Finite element methods for linear elasticity, in Mixed Finite Elements, Compatibility Conditions, and Applications. Springer-Verlag, Berlin, Heidelberg (2006) 159-194.
,[10] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg (1986). | MR | Zbl
and ,[11] Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl
,[12] Finite element free vibration analysis of eccentrically stiffened plates. Comput. Struct. 56 (1995) 993-1007. | Zbl
,[13] The nonconforming finite element method in the problem of clamped plate with ribs. Appl. Math. 21 (1976) 273-289. | MR | Zbl
, and ,[14] Finite element free vibration of eccentrically stiffened plates. Comput. Struct. 30 (1988) 1303-1317. | Zbl
and ,[15] Finite element analysis of stiffened plates. Comput. Struct. 21 (1985) 973-985. | Zbl
and ,[16] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1977) 292-315. | MR | Zbl
and ,[17] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | MR | Zbl
and ,Cité par Sources :