We study a microfluidic flow model where the movement of several charged species is coupled with electric field and the motion of ambient fluid. The main numerical difficulty in this model is the net charge neutrality assumption which makes the system essentially overdetermined. Hence we propose to use the involutive and the associated augmented form of the system in numerical computations. Numerical experiments on electrophoresis and stacking show that the completed system significantly improves electroneutrality constraint conservation and recovers analytical results while a direct implementation of the initial model fails.
Mots clés : microfluids, electrophoresis, stacking, overdetermined PDE systems, involution
@article{M2AN_2011__45_5_901_0, author = {Mohammadi, Bijan and Tuomela, Jukka}, title = {Involutive formulation and simulation for electroneutral microfluids}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {901--913}, publisher = {EDP-Sciences}, volume = {45}, number = {5}, year = {2011}, doi = {10.1051/m2an/2011001}, mrnumber = {2817549}, zbl = {1267.76132}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2011001/} }
TY - JOUR AU - Mohammadi, Bijan AU - Tuomela, Jukka TI - Involutive formulation and simulation for electroneutral microfluids JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 901 EP - 913 VL - 45 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2011001/ DO - 10.1051/m2an/2011001 LA - en ID - M2AN_2011__45_5_901_0 ER -
%0 Journal Article %A Mohammadi, Bijan %A Tuomela, Jukka %T Involutive formulation and simulation for electroneutral microfluids %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 901-913 %V 45 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2011001/ %R 10.1051/m2an/2011001 %G en %F M2AN_2011__45_5_901_0
Mohammadi, Bijan; Tuomela, Jukka. Involutive formulation and simulation for electroneutral microfluids. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 5, pp. 901-913. doi : 10.1051/m2an/2011001. http://www.numdam.org/articles/10.1051/m2an/2011001/
[1] Elliptic boundary problems, in Partial differential equations IX, M.S. Agranovich, Y.V. Egorov and M.A. Shubin Eds., Encyclopaedia of Mathematical Sciences 79, Springer (1997) 1-144. | MR | Zbl
,[2] Design and optimization of on-chip capillary electrophoresis. Electrophoresis J. 23 (2002) 2729-2744.
, and ,[3] Recent developments in electrokinetically driven analysis of microfabricated devices. Electrophoresis 21 (2000) 3931-3951.
,[4] Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8 (1955) 503-538. | MR | Zbl
and ,[5] Linear overdetermined systems of partial differential equations, in Partial Differential Equations VIII, M. Shubin Ed., Encyclopaedia of Mathematical Sciences 65, Springer (1996) 1-86. | MR | Zbl
and ,[6] Parabolic equations, in Partial differential equations VI, M.A. Shubin Ed., Encyclopaedia of Mathematical Sciences 63, Springer (1994) 201-313. | MR | Zbl
,[7] The MEMS Handbook, Handbook series for Mechanical Engineering 7. CRC Press (2002). | Zbl
,[8] Overdetermined elliptic systems. Found. Comp. Math. 6 (2006) 309-351. | MR | Zbl
, and ,[9] Completion of overdetermined parabolic PDEs. J. Symb. Comput. 43 (2008) 153-167. | MR | Zbl
and ,[10] Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (2004) 1876-1899. | Zbl
, , , and ,[11] On the zeros of certain rational functions. Trans. Amer. Math. Soc. 32 (1930) 658-668. | JFM | MR
,[12] Simplifying numerical solution of constrained PDE systems through involutive completion. ESAIM: M2AN 39 (2005) 909-929. | Numdam | MR | Zbl
and ,[13] Involutive upgrades of Navier-Stokes solvers. Int. J. Comput. Fluid Dyn. 23 (2009) 439-447. | MR | Zbl
and ,[14] Multiple-species model for electrokinetic instability. Phys. Fluids 17 (2005) 1245-1278. | Zbl
and ,[15] Transport equations in biology, Frontiers in Mathematics. Birkhäuser, Basel (2007). | MR | Zbl
,[16] Theoretical and Numerical Combustion. 2nd edn., R.T. Edwards, Inc. (2005).
and ,[17] Systems of Partial Differential Equations and Lie Pseudogroups. Mathematics and its applications 14. Gordon and Breach Science Publishers (1978). | MR | Zbl
,[18] Physicochemical Hydrodynamics. Wiley (1995).
,[19] Involution - The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics 24. Springer, 2010. | MR | Zbl
,[20] On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov. 83 (1965) 3-163 (in Russian). | MR | Zbl
,[21] Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc. 75 (1969) 179-239. | MR | Zbl
,[22] Instability of electrokinetic microchannel flows with conductivity gradients. Rev. Mod. Phys. 77 (2005) 977-1026. | Zbl
and ,Cité par Sources :