Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 739-760.

As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.

DOI : 10.1051/m2an/2010100
Classification : 65M60, 78M10
Mots-clés : waves, Maxwell Klein Gordon, non-linear constraints, finite elements, convergence analysis
@article{M2AN_2011__45_4_739_0,
     author = {Christiansen, Snorre H. and Scheid, Claire},
     title = {Convergence of a constrained finite element discretization of the {Maxwell} {Klein} {Gordon} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {739--760},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {4},
     year = {2011},
     doi = {10.1051/m2an/2010100},
     mrnumber = {2804657},
     zbl = {1282.78036},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010100/}
}
TY  - JOUR
AU  - Christiansen, Snorre H.
AU  - Scheid, Claire
TI  - Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 739
EP  - 760
VL  - 45
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010100/
DO  - 10.1051/m2an/2010100
LA  - en
ID  - M2AN_2011__45_4_739_0
ER  - 
%0 Journal Article
%A Christiansen, Snorre H.
%A Scheid, Claire
%T Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 739-760
%V 45
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010100/
%R 10.1051/m2an/2010100
%G en
%F M2AN_2011__45_4_739_0
Christiansen, Snorre H.; Scheid, Claire. Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 739-760. doi : 10.1051/m2an/2010100. http://www.numdam.org/articles/10.1051/m2an/2010100/

[1] R.A Adams and J.J.F. Fournier, Sobolev Spaces - Pure and Applied Mathematics Series. Second edition, Elsevier (2003). | MR | Zbl

[2] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155. | MR | Zbl

[3] S. Bartels, X. Fenga and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46 (2007) 61-87. | MR | Zbl

[4] A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The mathematics of finite elements and applications VI, J. Whiteman Ed., Academic Press, London (1988) 137-144. | MR | Zbl

[5] J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comput. 71 (2001) 147-156. | MR | Zbl

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). | MR | Zbl

[7] S.H. Christiansen, Résolution des équations intégrales pour la diffraction d'ondes accoustiques et électromagnétiques. Ph.D. thesis, École polytechnique, France (2002).

[8] S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the Electric Field Integral Equation. Math. Comput. 73 (2004) 143-167. | MR | Zbl

[9] S.H. Christiansen, Constraint preserving schemes for gauge invariant wave equations. SIAM J. Sci. Comput. 31 (2009) 1448-1469. | MR | Zbl

[10] S.H. Christiansen and R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations. SIAM J. Sci. Comput. 28 (2006) 75-101. | MR | Zbl

[11] S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2007) 813-829. | MR | Zbl

[12] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17-351. | MR | Zbl

[13] M. Crouzeix and V. Thomée, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput. 48 (1987) 521-532. | MR | Zbl

[14] J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in Lq of the L2-projection into finite element function spaces. Numer. Math. 23 (1975) 193-197. | MR | Zbl

[15] F. Dubois, Discrete vector potential representation of a divergence free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 27 (1990) 1103-1141. | MR | Zbl

[16] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys. 82 (1981) 1-28. | MR | Zbl

[17] V. Girault and P.-A. Raviart, Finite Element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin (1986). | MR | Zbl

[18] F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 36 (1989) 479-490. | MR | Zbl

[19] S. Klainerman, Mathematical challenges of general relativity. Rend. Mat. Appl. 27 (2007) 105-122. | MR | Zbl

[20] S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J. 74 (1994) 19-44. | MR | Zbl

[21] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math. 142 (1995) 39-119. | MR | Zbl

[22] E.H. Lieb and M. Loss, Analysis Graduate Studies in Mathematics 14. Second edition, AMS (2001). | MR | Zbl

[23] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod, Paris (1968). | MR | Zbl

[24] N. Masmoudi and K. Nakanishi, Uniqueness of Finite Energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys. 243 (2003) 123-136. | MR | Zbl

[25] P. Monk, Finite Element Methods for Maxwell's Equations. Oxford Science Publication (2003). | Zbl

[26] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633-649. | Zbl

[27] S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge. Commun. Partial Differ. Equ. 35 (2010) 1029-1057. | MR | Zbl

[28] J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics 2. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (1998). | MR | Zbl

[29] C.G. Simader, On Dirichlet Boundary Value Problem. Springer-Verlag (1972). | Zbl

[30] J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura. Appl. 146 (1987) 65-96. | MR | Zbl

[31] T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ. 189 (2003) 366-382. | MR | Zbl

Cité par Sources :