Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).
Mots-clés : finite volume method, Laplace equation, Delaunay meshes, Voronoi meshes, convergence, error estimates
@article{M2AN_2011__45_4_627_0, author = {Omnes, Pascal}, title = {On the second-order convergence of a function reconstructed from finite volume approximations of the {Laplace} equation on {Delaunay-Voronoi} meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {627--650}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/m2an/2010068}, mrnumber = {2804653}, zbl = {1269.65109}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010068/} }
TY - JOUR AU - Omnes, Pascal TI - On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 627 EP - 650 VL - 45 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010068/ DO - 10.1051/m2an/2010068 LA - en ID - M2AN_2011__45_4_627_0 ER -
%0 Journal Article %A Omnes, Pascal %T On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 627-650 %V 45 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010068/ %R 10.1051/m2an/2010068 %G en %F M2AN_2011__45_4_627_0
Omnes, Pascal. On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 627-650. doi : 10.1051/m2an/2010068. http://www.numdam.org/articles/10.1051/m2an/2010068/
[1] Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700-1716. | MR | Zbl
, , and ,[2] Discretization on unstructured grids for inhomogeneous, anisotropic media. II. Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717-1736. | MR | Zbl
, , and ,[3] Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145-195. | MR | Zbl
, and ,[4] Numerical solution of second-order elliptic equations on plane domains. RAIRO Modél. Math. Anal. Numér. 25 (1991) 169-191. | Numdam | MR | Zbl
,[5] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | MR | Zbl
and ,[6] On vertex reconstructions for cell-centered finite volume approximations of 2D anisotropic diffusion problems. Math. Models Methods Appl. Sci. 17 (2007) 1-32. | MR | Zbl
and ,[7] A Finite Volume method to solve the Navier Stokes equations for incompressible flows on unstructured meshes. Int. J. Thermal Sciences 39 (2000) 806-825.
, and ,[8] Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032-3070. | MR | Zbl
and ,[9] A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224 (2007) 785-823. | MR | Zbl
and ,[10] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | MR | Zbl
,[11] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR | Zbl
, and ,[12] Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42 (2005) 2496-2521. | MR | Zbl
, and ,[13] Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59 (2009) 239-257. | MR | Zbl
,[14] Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19 (2003) 463-486. | MR | Zbl
, and ,[15] Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | MR | Zbl
, and ,[16] A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation. International Journal on Finite Volumes 6 (2009). | MR
, , and ,[17] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973) 33-75. | Numdam | MR | Zbl
and ,[18] A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes. SIAM J. Numer. Anal. 45 (2007) 1142-1174. | MR | Zbl
, and ,[19] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203-1249. | Numdam | MR | Zbl
and ,[20] Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Partial Differ. Equ. 16 (2000) 285-311. | MR | Zbl
, and ,[21] On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865-1888. | MR | Zbl
, and ,[22] Handbook of numerical analysis 7, P.G. Ciarlet and J.-L. Lions Eds., North-Holland/Elsevier, Amsterdam (2000) 713-1020. | MR | Zbl
, and ,[23] Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. | MR | Zbl
and ,[24] On first and second order box schemes. Computing 41 (1989) 277-296. | Zbl
,[25] An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differ. Equ. 11 (1995) 165-173. | MR | Zbl
,[26] A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481-499. | MR | Zbl
,[27] Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939-1959. | MR | Zbl
,[28] Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. | MR | Zbl
, and ,[29] Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes. C. R. Math. Acad. Sci. Paris 340 (2005) 921-926. | MR | Zbl
,[30] Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. C. R. Math. Acad. Sci. Paris 341 (2005) 787-792. | MR | Zbl
,[31] A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. International Journal on Finite Volumes 6 (2009). | MR
,[32] Finite volume methods on Voronoi meshes. Numer. Methods Partial Differ. Equ. 14 (1998) 193-212. | MR | Zbl
,[33] Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media. International Journal on Finite Volumes 5 (2008). | MR
and ,[34] Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions. International Journal on Finite Volumes 6 (2009). | MR
,[35] Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | MR | Zbl
,[36] Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differ. Equ. 14 (1998) 213-231. | MR | Zbl
and ,[37] On convergence of block centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351-375. | MR | Zbl
and ,Cité par Sources :