Galerkin discretizations of integral equations in require the evaluation of integrals where S(1),S(2) are d-simplices and g has a singularity at x = y. We assume that g is Gevrey smooth for x y and satisfies bounds for the derivatives which allow algebraic singularities at x = y. This holds for kernel functions commonly occurring in integral equations. We construct a family of quadrature rules using N function evaluations of g which achieves exponential convergence |I - | ≤ C exp(-rNγ) with constants r, γ > 0.
Mots-clés : numerical integration, hypersingular integrals, integral equations, Gevrey regularity, exponential convergence
@article{M2AN_2011__45_3_387_0, author = {Chernov, Alexey and von Petersdorff, Tobias and Schwab, Christoph}, title = {Exponential convergence of $hp$ quadrature for integral operators with {Gevrey} kernels}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {387--422}, publisher = {EDP-Sciences}, volume = {45}, number = {3}, year = {2011}, doi = {10.1051/m2an/2010061}, zbl = {1269.65143}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010061/} }
TY - JOUR AU - Chernov, Alexey AU - von Petersdorff, Tobias AU - Schwab, Christoph TI - Exponential convergence of $hp$ quadrature for integral operators with Gevrey kernels JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 387 EP - 422 VL - 45 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010061/ DO - 10.1051/m2an/2010061 LA - en ID - M2AN_2011__45_3_387_0 ER -
%0 Journal Article %A Chernov, Alexey %A von Petersdorff, Tobias %A Schwab, Christoph %T Exponential convergence of $hp$ quadrature for integral operators with Gevrey kernels %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 387-422 %V 45 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010061/ %R 10.1051/m2an/2010061 %G en %F M2AN_2011__45_3_387_0
Chernov, Alexey; von Petersdorff, Tobias; Schwab, Christoph. Exponential convergence of $hp$ quadrature for integral operators with Gevrey kernels. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 387-422. doi : 10.1051/m2an/2010061. http://www.numdam.org/articles/10.1051/m2an/2010061/
[1] Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble) 17 (1967) 295-323. | Numdam | MR | Zbl
and ,[2] General Theory of PDE and Gevrey Classes, in General Theory of Partial Differential Equations and Microlocal Analysis, Trieste 1995, Notes Math. Ser. 349, Pitman Res., Longman, Harlow (1996) 6-81. | MR | Zbl
and ,[3] A multivariate Faà di Bruno Formula with applications. Trans. AMS 348 (1996) 503-520. | MR | Zbl
and ,[4] Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. HAL Archives (2010), http://hal.archives-ouvertes.fr/docs/00/45/41/17/PDF/CoDaNi_Analytic_Part_I.pdf
, and ,[5] Error bounds for Gaussian quadrature and weighted polynomial approximation. SIAM J. Numer. Anal. 21 (1984) 400-412. | MR | Zbl
and ,[6] Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19 (1982) 6. | MR | Zbl
,[7] The boundary integro-differential equations of three-dimensional Neumann problem in linear elasticity. Numer. Math. 68 (1994) 269-281. | MR | Zbl
,[8] Boundary Integral Equations, Springer Appl. Math. Sci. 164. Springer Verlag (2008). | MR | Zbl
and ,[9] A Galerkin collocation method for some integral equations of the first kind. Computing 25 (1980) 89-130. | MR | Zbl
, and ,[10] Pseudodifferential Operators and Markov Processes I: Fourier Analysis and Semigroups. Imperial College Press, London (2001). | MR | Zbl
,[11] Über einseitige Sprungrelationen und hypersinguläre Operatoren in der Methode der Randelemente. Ph.D. Dissertation, Department of Mathematics, Univ. Stuttgart, Germany (1990). | Zbl
,[12] Über die Formulierung eines allgemeinen Diffraktionsproblems mit Hilfe einer Integralgleichung. Zeitschr. f. Physik 126 (1949) 601-618. | MR | Zbl
,[13] Boundary Integral Equations, in Encyclopedia of Mathematical Sciences 27, Analysis IV, V.G. Maz'ya and S.M. Nikolskii Eds., Springer-Verlag, Berlin (1991) 127-228. | MR | Zbl
,[14] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, Cambridge (2000). | MR | Zbl
,[15] Integral Equations with Non-integrable kernels. Integr. Equ. Oper. Theory 5 (1982) 562-572. | MR | Zbl
,[16] Acoustic and Electromagnetic Equations. Springer-Verlag, New York (2001). | MR | Zbl
,[17] On Kolmogorov Equations for Anisotropic Multivariate Lévy Processes. Finance Stoch. (2010) DOI: 10.1007/s00780-009-0108-x. | MR | Zbl
, and ,[18] Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Fredholmscher Integralgleichungen. Ph.D. Thesis, Universität Kiel, Germany (1992). | Zbl
,[19] Randelementmethoden. Teubner Publ., Wiesbaden (2004) [English Edition: Boundary Element Methods. Springer Verlag, Berlin-Heidelberg-New York (to appear)]. | MR
and ,[20] Variable order composite quadrature of singular and nearly singular integrals. Computing 53 (1994) 173-194. | MR | Zbl
,[21] On numerical cubatures of singular surface integrals in boundary element methods. Numer. Math. 62 (1992) 343-369. | MR | Zbl
and ,[22] Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Springer-Verlag (1993). | MR | Zbl
,[23] The hp-version of the boundary element method for solving 2- and 3-dimensional boundary value problems. Comput. Meth. Appl. Mech. Engrg. 133 (1996) 183-208. | Zbl
,[24] Quadrature Better than Clenshaw-Curtis? SIAM Rev. 50 (2008) 67-87. | MR | Zbl
,[25] Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. Ph.D. Thesis No. 18221, ETH Zürich, Switzerland (2009).
,Cité par Sources :