To filter perturbed local measurements on a random medium, a dynamic model jointly with an observation transfer equation are needed. Some media given by PDE could have a local probabilistic representation by a lagrangian stochastic process with mean-field interactions. In this case, we define the acquisition process of locally homogeneous medium along a random path by a lagrangian Markov process conditioned to be in a domain following the path and conditioned to the observations. The nonlinear filtering for the mobile signal is therefore those of an acquisition process contaminated by random errors. This will provide a Feynman-Kac distribution flow for the conditional laws and an N particle approximation with a asymptotic convergence. An application to nonlinear filtering for 3D atmospheric turbulent fluids will be described.
Mots clés : nonlinear filtering, Feynman-Kac, stochastic model, turbulence
@article{M2AN_2010__44_5_921_0, author = {Baehr, Christophe}, title = {Nonlinear filtering for observations on a random vector field along a random path. {Application} to atmospheric turbulent velocities}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {921--945}, publisher = {EDP-Sciences}, volume = {44}, number = {5}, year = {2010}, doi = {10.1051/m2an/2010047}, mrnumber = {2731398}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010047/} }
TY - JOUR AU - Baehr, Christophe TI - Nonlinear filtering for observations on a random vector field along a random path. Application to atmospheric turbulent velocities JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 921 EP - 945 VL - 44 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010047/ DO - 10.1051/m2an/2010047 LA - en ID - M2AN_2010__44_5_921_0 ER -
%0 Journal Article %A Baehr, Christophe %T Nonlinear filtering for observations on a random vector field along a random path. Application to atmospheric turbulent velocities %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 921-945 %V 44 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010047/ %R 10.1051/m2an/2010047 %G en %F M2AN_2010__44_5_921_0
Baehr, Christophe. Nonlinear filtering for observations on a random vector field along a random path. Application to atmospheric turbulent velocities. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 5, pp. 921-945. doi : 10.1051/m2an/2010047. http://www.numdam.org/articles/10.1051/m2an/2010047/
[1] Modélisation probabiliste des écoulements atmosphériques turbulents afin d'en filtrer la mesure par approche particulaire. Ph.D. Thesis University of Toulouse III - Paul Sabatier, Toulouse Mathematics Institute, France (2008).
,[2] Some Mean-Field Processes Filtering using Particles System Approximations. In preparation.
and ,[3] Some issues and results on the EnKF and particle filters for meteorological models, in Chaotic Systems: Theory and Applications, C.H. Skiadas and I. Dimotikalis Eds., World Scientific (2010).
and ,[4] Flots et séries de Taylor stochastiques. Probab. Theor. Relat. Fields 81 (1989) 29-77. | Zbl
,[5] Convergence rate for the approximation of the limit law of weakly interacting particles. 2: Application to the Burgers equation. Ann. Appl. Prob. 6 (1996) 818-861. | Zbl
and ,[6] Zbl
and and M. Romito, A probabilistic representation for the vorticity of a 3d viscous fluid and for general systems of parabolic equations. Proc. Edinb. Math. Soc. 48 (2005) 295-336. |[7] A stochastic Lagrangian representation of 3-dimensional incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 61 (2008) 330-345. | Zbl
and ,[8] A Lagrangian stochastic model for dispersion in stratified turbulence. Phys. Fluids 17 (2005) 025109. | Zbl
and ,[9] Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). | Zbl
,[10] Turbulence. Cambridge University Press, Cambridge (1995). | Zbl
,[11] A stochastic-Lagrangian particle system for the Navier-Stokes equations. Nonlinearity 21 (2008) 2537-2553. | Zbl
and ,[12] Brownian Motion and Stochastic Calculus. Springer-Verlag (1988). | Zbl
and ,[13] Asymptotic behaviour of some particle systems: McKean Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer-Verlag (1996). | Zbl
,[14] Stochastic Navier-Stokes Equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250-1310. | Zbl
and ,[15] Turbulent Flows. Cambridge University Press, Cambridge (2000). | Zbl
,[16] Topics in propagation of chaos, in École d'Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math. 1464, Springer-Verlag (1991). | Zbl
,Cité par Sources :