The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
Mots-clés : Stokes problem, spectral elements, penalty algorithm
@article{M2AN_2011__45_2_201_0, author = {Bernardi, Christine and Blouza, Adel and Chorfi, Nejmeddine and Kharrat, Nizar}, title = {A penalty algorithm for the spectral element discretization of the {Stokes} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {201--216}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/m2an/2010038}, mrnumber = {2804636}, zbl = {1267.76023}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010038/} }
TY - JOUR AU - Bernardi, Christine AU - Blouza, Adel AU - Chorfi, Nejmeddine AU - Kharrat, Nizar TI - A penalty algorithm for the spectral element discretization of the Stokes problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 201 EP - 216 VL - 45 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010038/ DO - 10.1051/m2an/2010038 LA - en ID - M2AN_2011__45_2_201_0 ER -
%0 Journal Article %A Bernardi, Christine %A Blouza, Adel %A Chorfi, Nejmeddine %A Kharrat, Nizar %T A penalty algorithm for the spectral element discretization of the Stokes problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 201-216 %V 45 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010038/ %R 10.1051/m2an/2010038 %G en %F M2AN_2011__45_2_201_0
Bernardi, Christine; Blouza, Adel; Chorfi, Nejmeddine; Kharrat, Nizar. A penalty algorithm for the spectral element discretization of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 201-216. doi : 10.1051/m2an/2010038. http://www.numdam.org/articles/10.1051/m2an/2010038/
[1] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257-281. | MR | Zbl
, , and ,[2] Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).
,[3] Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211-236. | Numdam | MR | Zbl
,[4] Indicateurs d'erreur en h - N version des éléments spectraux. RAIRO Modél. Math. Anal. Numér. 30 (1996) 1-38. | Numdam | MR | Zbl
,[5] Polynomial approximation of some singular functions. Appl. Anal. 42 (1991) 1-32. | MR | Zbl
and ,[6] Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485. | MR | Zbl
and ,[7] Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci. 9 (1999) 395-414. | MR | Zbl
and ,[8] Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251-278.
, and ,[9] A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci. 13 (2003) 1599-1628. | MR | Zbl
, and ,[10] Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer-Verlag (2004). | MR | Zbl
, and ,[11] Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng. 35 (1982) 169-206. | MR | Zbl
and ,[12] Penalty finite element method for the Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 42 (1984) 183-224. | MR | Zbl
and ,[13] Convergence of iterative methods in penalty finite element approximation of the Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 60 (1987) 1-29. | MR | Zbl
and ,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms . Springer-Verlag (1986). | MR | Zbl
and ,[15] Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput. 14 (1993) 310-337. | MR | Zbl
, , and ,[16] Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33-50. | MR | Zbl
and ,Cité par Sources :