We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods.
Mots clés : porous media flows, Darcy equations, finite elements
@article{M2AN_2010__44_6_1155_0, author = {Girault, Vivette and Murat, Fran\c{c}ois and Salgado, Abner}, title = {Finite element discretization of {Darcy's} equations with pressure dependent porosity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1155--1191}, publisher = {EDP-Sciences}, volume = {44}, number = {6}, year = {2010}, doi = {10.1051/m2an/2010019}, mrnumber = {2769053}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010019/} }
TY - JOUR AU - Girault, Vivette AU - Murat, François AU - Salgado, Abner TI - Finite element discretization of Darcy's equations with pressure dependent porosity JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2010 SP - 1155 EP - 1191 VL - 44 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010019/ DO - 10.1051/m2an/2010019 LA - en ID - M2AN_2010__44_6_1155_0 ER -
%0 Journal Article %A Girault, Vivette %A Murat, François %A Salgado, Abner %T Finite element discretization of Darcy's equations with pressure dependent porosity %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2010 %P 1155-1191 %V 44 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010019/ %R 10.1051/m2an/2010019 %G en %F M2AN_2010__44_6_1155_0
Girault, Vivette; Murat, François; Salgado, Abner. Finite element discretization of Darcy's equations with pressure dependent porosity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 6, pp. 1155-1191. doi : 10.1051/m2an/2010019. http://www.numdam.org/articles/10.1051/m2an/2010019/
[1] Sobolev spaces. Academic Press (1975). | Zbl
,[2] Homogeneization of the Navier-Stokes equations with slip boundary conditions. Comm. Pure Appl. Math. 44 (1991) 605-641. | Zbl
,[3] Spectral discretization of Darcy's equations with pressure dependent porosity. Report 2009-10, Laboratoire Jacques-Louis Lions, France (2009).
, , and ,[4] The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | EuDML | Zbl
,[5]
, and , deal.II - a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24.[6] Interpolation spaces: An introduction, Comprehensive Studies in Mathematics 223. Springer-Verlag (1976). | Zbl
and ,[7] Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics 939. Springer-Verlag, Berlin, Germany (2008).
, , , , and ,[8] The mathematical theory of finite element methods, Texts in applied mathematics 15. Third edition, Springer-Verlag (2008). | Zbl
and ,[9] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. R2 (1974) 129-151. | EuDML | Numdam | Zbl
,[10] Mixed and hybrid finite element methods, Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | Zbl
and ,[11] Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | EuDML | Zbl
, and ,[12] Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 17-351. | Zbl
,[13] Homogeneization of the Stokes problem with non-homogeneous boundary conditions. Math. Appl. Sci. 19 (1996) 857-881. | Zbl
, and ,[14] Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, France (1856).
,[15] A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975) 689-696. | Zbl
and ,[16] Équations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux. J. Mécanique 14 (1975) 73-108. | Zbl
and ,[17] Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, USA (2004). | Zbl
and ,[18] Real analysis, modern techniques and their applications. Second edition, Wiley Interscience (1999). | Zbl
,[19] Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45 (1901) 1782-1788.
,[20] Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin, Germany (1986). | Zbl
and ,[21] Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161-198. | Zbl
and ,[22] Maximum-norm stability of the finite-element Stokes projection. J. Math. Pure. Appl. 84 (2005) 279-330. | Zbl
, and ,[23] Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman, Boston, USA (1985). | Zbl
,[24] Freefem++. Second Edition, Version 2.24-2-2. Laboratoire J.-L. Lions, UPMC, Paris, France (2008).
, , and ,[25] Lectures and exercises on functional analysis, Translations of Mathematical Monographs 233. American Mathematical Society, USA (2006). | Zbl
,[26] Functional analysis. Third edition, Nauka (1984) [in Russian]. | Zbl
and ,[27] Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities. Comput. Math. Appl. 51 (2006) 793-804. | Zbl
and ,[28] Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris, France (1968). | Zbl
and ,[29] Mixed finite element methods for nonlinear second order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865-885. | Zbl
,[30] Substantiation of the Darcy Law for a porous medium with condition of partial adhesion. Sbornik Math. 189 (1998) 1871-1888. | Zbl
,[31] On a hierarchy of approximate models for flows of incompressible fluids through porous solids. M3AS 17 (2007) 215-252. | Zbl
,[32] Mixed and Hybrid methods in Handbook of Numerical Analysis II: Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 523-639. | Zbl
and ,[33] Symmetric indefinite preconditioners for saddle point problems with applications to pde-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29 (2007) 752-773. | Zbl
and ,[34] Homogeneization of wall-slip gas flow through porous media. Transp. Porous Media 36 (1999) 293-306.
and ,[35] An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana 3. Springer-Verlag, Berlin-Heidelberg (2007). | Zbl
,[36] Analysis of iterative methods for saddle point problems: a unified approach. Math. Comp. 71 (2001) 479-505. | Zbl
,Cité par Sources :