Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 531-571.

We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.

DOI : 10.1051/m2an/2010013
Classification : 65N30, 35L60, 35L65
Mots clés : electrohydrodynamics, space-time discretization, finite elements, convergence
@article{M2AN_2010__44_3_531_0,
     author = {Prohl, Andreas and Schmuck, Markus},
     title = {Convergent finite element discretizations of the {Navier-Stokes-Nernst-Planck-Poisson} system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {531--571},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/m2an/2010013},
     mrnumber = {2666654},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2010013/}
}
TY  - JOUR
AU  - Prohl, Andreas
AU  - Schmuck, Markus
TI  - Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 531
EP  - 571
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2010013/
DO  - 10.1051/m2an/2010013
LA  - en
ID  - M2AN_2010__44_3_531_0
ER  - 
%0 Journal Article
%A Prohl, Andreas
%A Schmuck, Markus
%T Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 531-571
%V 44
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2010013/
%R 10.1051/m2an/2010013
%G en
%F M2AN_2010__44_3_531_0
Prohl, Andreas; Schmuck, Markus. Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 531-571. doi : 10.1051/m2an/2010013. http://www.numdam.org/articles/10.1051/m2an/2010013/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier (2003). | Zbl

[2] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 23 (1984) 337-344. | Zbl

[3] M.Z. Bazant, K. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70 (2004) 021506.

[4] S.C. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). | Zbl

[5] A. Chorin, On the convergence of discrete approximations of the Navier-Stokes Equations. Math. Com. 23 (1969) 341-353. | Zbl

[6] P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2 (1973) 17-31. | Zbl

[7] J.F. Ciavaldini, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston, USA (1985). | Zbl

[9] J.L. Guermond, J. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 6011-6045. | Zbl

[10] J.G. Heywood and R. Rannacher, Finite element approximation of the non-stationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. | Zbl

[11] R.J. Hunter, Foundations of Colloidal Science. Oxford University Press, UK (2000).

[12] M.S. Kilic, M.Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2007) 021503.

[13] J.L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential equations, Math. Stud. 30, Amsterdam, North-Holland (1978) 283-346. | Zbl

[14] J.L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Grundlehren der Mathematischen Wissenschaften 181. Springer-Verlag, Berlin-New York (1972). | Zbl

[15] P.L. Lions, Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models. Oxford University Press, UK (1996). | Zbl

[16] R.H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature-driven interfaces. SIAM J. Numer. Anal. 34 (1997) 490-512. | Zbl

[17] R.F. Probstein, Physiochemical Hydrodynamics, An introduction. John Wiley and Sons, Inc. (1994).

[18] A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner (1997). | Zbl

[19] A. Prohl, On pressure approximation via projection methods for the nonstationary incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 47 (2008) 158-180.

[20] A. Prohl and M. Schmuck, Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111 (2009) 591-630. | Zbl

[21] M. Schmuck, Modeling, Analysis and Numerics in Electrohydrodynamics. Ph.D. Thesis, University of Tübingen, Germany (2008).

[22] M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. M3AS 19 (2009) 1-23.

[23] J. Simon, Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157 (1990) 117-148. | Zbl

[24] R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires ii. Arch. Ration. Mech. Anal. 33 (1969) 377-385. | Zbl

[25] R. Temam, Navier-Stokes equations - theory and numerical analysis. AMS Chelsea Publishing, Providence, USA (2001). | Zbl

Cité par Sources :