We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixed finite element approximations to the stationarity conditions of the three-field augmented lagrangian. The finite element spaces for the bulk displacement and the Lagrange multiplier must satisfy a discrete inf-sup condition, while discontinuous finite element spaces spanned by nodal basis functions are considered for the unilateral contact variable so as to use collocation methods. Two iterative algorithms are presented and analyzed, namely an Uzawa-type method within a decomposition-coordination approach and a nonsmooth Newton's method. Finally, numerical results illustrating the theoretical analysis are presented.
Mots-clés : unilateral contact, cohesive forces, augmented lagrangian, mixed finite elements, decomposition-coordination method, Newton's method
@article{M2AN_2010__44_2_323_0, author = {Doyen, David and Ern, Alexandre and Piperno, Serge}, title = {A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {323--346}, publisher = {EDP-Sciences}, volume = {44}, number = {2}, year = {2010}, doi = {10.1051/m2an/2010004}, mrnumber = {2655952}, zbl = {1192.74355}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010004/} }
TY - JOUR AU - Doyen, David AU - Ern, Alexandre AU - Piperno, Serge TI - A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 323 EP - 346 VL - 44 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010004/ DO - 10.1051/m2an/2010004 LA - en ID - M2AN_2010__44_2_323_0 ER -
%0 Journal Article %A Doyen, David %A Ern, Alexandre %A Piperno, Serge %T A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 323-346 %V 44 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010004/ %R 10.1051/m2an/2010004 %G en %F M2AN_2010__44_2_323_0
Doyen, David; Ern, Alexandre; Piperno, Serge. A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 323-346. doi : 10.1051/m2an/2010004. http://www.numdam.org/articles/10.1051/m2an/2010004/
[1] A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Engrg. 92 (1991) 353-375. | Zbl
and ,[2] Stability of finite element mixed interpolations for contact problems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001) 167-183. | EuDML | Zbl
and ,[3] Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific (1982). | Zbl
,[4] Nonlinear Programming. Athena Scientific (1999). | Zbl
,[5] The variational approach to fracture. J. Elasticity 91 (2008) 5-148. | Zbl
, and ,[6] Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput. Struct. 73 (1999) 249-266. | Zbl
, and ,[7] On the augmented Lagrangian approach to Signorini elastic contact problem. Numer. Math. 88 (2001) 641-659. | Zbl
,[8] Mathematical elasticity, Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). | Zbl
,[9] Optimization and nonsmooth analysis, Classics in Applied Mathematics 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA, second edition (1990). | Zbl
,[10] An introduction to nonlinear analysis: applications. Kluwer Academic Publishers, Boston, USA (2003). | Zbl
, and ,[11] Convex analysis and variational problems, Classics in Applied Mathematics. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1999). | Zbl
and ,[12] Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, USA (2004). | Zbl
and ,[13] Augmented Lagrangian methods: Applications to the numerical solution of boundary value problems, Studies in Mathematics and its Applications 15. North-Holland Publishing Co., Amsterdam (1983). | Zbl
and ,[14] Contact with adhesion, in Topics in nonsmooth mechanics, Birkhäuser, Basel, Switzerland (1988) 157-185. | Zbl
,[15] Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1989). | Zbl
and ,[16] Numerical methods for unilateral problems in solid mechanics, in Handbook of numerical analysis IV, Amsterdam, North-Holland (1996) 313-485. | Zbl
, and ,[17] A discontinuous stabilized mortar method for general 3d elastic problems. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4881-4900. | Zbl
and ,[18] Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41 (2002) 401-421. | Zbl
and ,[19] An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005) 156-173 (electronic). | Zbl
and ,[20] Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1988). | Zbl
and ,[21] Remarks about Signorini's problem in linear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981) 605-645. | Numdam | Zbl
,[22] Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. ESAIM: M2AN 39 (2005) 827-854. | Numdam
and ,[23] Nonlinear Computational Structural Mechanics - New Approaches and Non-Incremental Methods of Calculation. Springer-Verlag (1999). | Zbl
,[24] Non-homogeneous boundary value problems and applications I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York, USA (1972). | Zbl
and ,[25] A mixed interface finite element for cohesive zone models. Comput. Methods Appl. Mech. Engrg. 198 (2008) 302-317. | Zbl
,[26] Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33 (1979) 217-229. | Zbl
and ,[27] Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Commun. Partial Differ. Equ. 17 (1992) 805-826. | Zbl
and ,[28] A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353-367. | Zbl
and ,[29] Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | Zbl
, and ,Cité par Sources :