We consider an initial and Dirichlet boundary value problem for a fourth-order linear stochastic parabolic equation, in one space dimension, forced by an additive space-time white noise. Discretizing the space-time white noise a modelling error is introduced and a regularized fourth-order linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized problem are constructed by using, for discretization in space, a Galerkin finite element method based on C0 or C1 piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates for the modelling error and for the approximation error to the solution of the regularized problem.
Mots-clés : finite element method, space-time white noise, backward Euler time-stepping, fully-discrete approximations, a priori error estimates
@article{M2AN_2010__44_2_289_0, author = {Kossioris, Georgios T. and Zouraris, Georgios E.}, title = {Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {289--322}, publisher = {EDP-Sciences}, volume = {44}, number = {2}, year = {2010}, doi = {10.1051/m2an/2010003}, mrnumber = {2655951}, zbl = {1189.65018}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2010003/} }
TY - JOUR AU - Kossioris, Georgios T. AU - Zouraris, Georgios E. TI - Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 289 EP - 322 VL - 44 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2010003/ DO - 10.1051/m2an/2010003 LA - en ID - M2AN_2010__44_2_289_0 ER -
%0 Journal Article %A Kossioris, Georgios T. %A Zouraris, Georgios E. %T Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 289-322 %V 44 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2010003/ %R 10.1051/m2an/2010003 %G en %F M2AN_2010__44_2_289_0
Kossioris, Georgios T.; Zouraris, Georgios E. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 289-322. doi : 10.1051/m2an/2010003. http://www.numdam.org/articles/10.1051/m2an/2010003/
[1] Finite element and difference approximation of some linear stochastic partial differential equations. Stoch. Stoch. Rep. 64 (1998) 117-142. | Zbl
, and ,[2] Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800-825. | Zbl
, and ,[3] Numerical method for a parabolic stochastic partial differential equation. Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden (2004).
,[4] Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112-124. | Zbl
and ,[5] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, USA (1994). | Zbl
and ,[6] Implicit approximation scheme for the Cahn-Hilliard stochastic equation. PMA 613, Laboratoire de Probabilités et Modèles Alétoires, CNRS U.M.R. 7599, Universtités Paris VI et VII, Paris, France (2000). | Zbl
,[7] Cahn-Hilliard equation: existence of the solution and of its density. Bernoulli 7 (2001) 777-816. | Zbl
,[8] The finite element methods for elliptic problems. North-Holland, New York (1987). | Zbl
,[9] Browian motion in spinodal decomposition. Acta Metall. 18 (1970) 297-306.
,[10] Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996) 241-263. | Zbl
and ,[11] Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space. Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, USA (1988). | Zbl
and ,[12] Numerical study of the late stages of spinodal decomposition. Phys. Rev. B 37 (1987) 9638-9649.
, and ,[13] Matrix Computations. Second Edition, The John Hopkins University Press, Baltimore, USA (1989). | Zbl
and ,[14] Time-discretised Galerkin approximations of parabolic stochastic PDEs. Bull. Austral. Math. Soc. 54 (1996) 79-85. | Zbl
and ,[15] Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147 (2002) 485-516. | Zbl
,[16] Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2003) 141-186. | Zbl
,[17] Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes-Monograph Series 26. Institute of Mathematical Statistics, Hayward, USA (1995). | Zbl
and ,[18] Spinodal decomposition of symmetric diblock copolymer homopolymer blends at the Lifshitz point. J. Chem. Phys. 110 (1999) 4079-4089.
and ,[19] Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs. J. Appl. Math. Stoch. Anal. 14 (2001) 47-53. | Zbl
and ,[20] Fully-Discrete Finite Element Approximations for a Fourth-Order Linear Stochastic Parabolic Equation with Additive Space-Time White Noise. TRITA-NA 2008:2, School of Computer Science and Communication, KTH, Stockholm, Sweden (2008).
and ,[21] Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer-Verlag, Berlin-Heidelberg, Germany (1972). | Zbl
and ,[22] Lower bounds and non-uniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7 (2007) 135-181. | Zbl
and ,[23] On the discretization in time of parabolic stochastic partial differential equations. ESAIM: M2AN 35 (2001) 1055-1078. | Numdam | Zbl
,[24] Galerkin Finite Element Methods for Parabolic Problems, Spriger Series in Computational Mathematics 25. Springer-Verlag, Berlin-Heidelberg, Germany (1997). | Zbl
,[25] Error analysis and smothing properies of discretized deterministic and stochastic parabolic problems. Ph.D. Thesis, Department of Computational Mathematics, Chalmers University of Technology and Göteborg University, Göteborg, Sweden (2003).
,[26] Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT 44 (2004) 829-847. | Zbl
,[27] Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363-1384. | Zbl
,[28] An introduction to stochastic partial differential equations., Lecture Notes in Mathematics 1180. Springer Verlag, Berlin-Heidelberg, Germany (1986) 265-439. | Zbl
,[29] Finite element methods for parabolic stochastic PDEs. Potential Anal. 23 (2005) 1-43. | Zbl
,Cité par Sources :