In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the
Mots-clés : iterative initialization, DAEs, singular perturbations, legacy codes, inertial manifolds
@article{M2AN_2009__43_4_757_0, author = {Zagaris, Antonios and Gear, C. William and Kaper, Tasso J. and Kevrekidis, Yannis G.}, title = {Analysis of the accuracy and convergence of equation-free projection to a slow manifold}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {757--784}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009026}, mrnumber = {2542876}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009026/} }
TY - JOUR AU - Zagaris, Antonios AU - Gear, C. William AU - Kaper, Tasso J. AU - Kevrekidis, Yannis G. TI - Analysis of the accuracy and convergence of equation-free projection to a slow manifold JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 757 EP - 784 VL - 43 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009026/ DO - 10.1051/m2an/2009026 LA - en ID - M2AN_2009__43_4_757_0 ER -
%0 Journal Article %A Zagaris, Antonios %A Gear, C. William %A Kaper, Tasso J. %A Kevrekidis, Yannis G. %T Analysis of the accuracy and convergence of equation-free projection to a slow manifold %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 757-784 %V 43 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009026/ %R 10.1051/m2an/2009026 %G en %F M2AN_2009__43_4_757_0
Zagaris, Antonios; Gear, C. William; Kaper, Tasso J.; Kevrekidis, Yannis G. Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 757-784. doi : 10.1051/m2an/2009026. http://www.numdam.org/articles/10.1051/m2an/2009026/
[1] Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704-718. | MR | Zbl
and ,[2] Applications of Centre Manifold Theory, Applied Mathematical Sciences 35. Springer-Verlag, New York (1981). | MR | Zbl
,[3] Low-order modeling, initializations, and the slow manifold. Tellus 47A (1995) 145-161.
, and ,[4] Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31 (1979) 53-98. | MR | Zbl
,[5] Constraint-defined manifolds: a legacy-code approach to low-dimensional computation. J. Sci. Comp. 25 (2005) 17-28. | MR
and ,[6] Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732. | MR | Zbl
, , and ,[7] Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82 (1999) 2282-2285.
,[8] Geometric singular perturbation theory, in Dynamical Systems, Montecatini Terme, L. Arnold Ed., Lecture Notes Math. 1609, Springer-Verlag, Berlin (1994) 44-118. | MR | Zbl
,[9] Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165 (2002) 66-93. | MR | Zbl
and ,[10] Iterative Methods for Linear and Nonlinear Equations, Frontiers In Applied Mathematics 16. SIAM Publications, Philadelphia (1995). | MR | Zbl
,[11] Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715-762. | MR | Zbl
, , , , and ,[12] Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16 (1979) 980-998. | MR | Zbl
,[13] Problems with Different Time Scales, in Multiple Time Scales, J.H. Brackbill and B.I. Cohen Eds., Academic Press (1985) 29-57. | MR | Zbl
,[14] Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37 (1980) 1685-1699. | MR
,[15] Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239-264.
and ,[16] Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986). | MR | Zbl
,[17] Stabilization of unstable procedures: A recursive projection method. SIAM J. Numer. Anal. 30 (1993) 1099-1120. | MR | Zbl
and ,[18] Initialization of a Lattice Boltzmann Model with Constrained Runs. Report TW444, Catholic University of Leuven, Belgium (2005).
, and ,[19] Accuracy of hybrid Lattice Boltzmann/Finite Difference schemes for reaction-diffusion systems. Multiscale Model. Sim. 6 (2007) 838-857. | MR | Zbl
, , and ,[20] Analysis of the Computational Singular Perturbation reduction method for chemical kinetics. J. Nonlin. Sci. 14 (2004) 59-91. | MR | Zbl
, and ,[21] Fast and slow dynamics for the Computational Singular Perturbation method. Multiscale Model. Sim. 2 (2004) 613-638. | MR | Zbl
, and ,[22] Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Numer. Math. (submitted).
, , , and ,Cité par Sources :