In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the
Mots-clés : iterative initialization, DAEs, singular perturbations, legacy codes, inertial manifolds
@article{M2AN_2009__43_4_757_0, author = {Zagaris, Antonios and Gear, C. William and Kaper, Tasso J. and Kevrekidis, Yannis G.}, title = {Analysis of the accuracy and convergence of equation-free projection to a slow manifold}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {757--784}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009026}, mrnumber = {2542876}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009026/} }
TY - JOUR AU - Zagaris, Antonios AU - Gear, C. William AU - Kaper, Tasso J. AU - Kevrekidis, Yannis G. TI - Analysis of the accuracy and convergence of equation-free projection to a slow manifold JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 757 EP - 784 VL - 43 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009026/ DO - 10.1051/m2an/2009026 LA - en ID - M2AN_2009__43_4_757_0 ER -
%0 Journal Article %A Zagaris, Antonios %A Gear, C. William %A Kaper, Tasso J. %A Kevrekidis, Yannis G. %T Analysis of the accuracy and convergence of equation-free projection to a slow manifold %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 757-784 %V 43 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009026/ %R 10.1051/m2an/2009026 %G en %F M2AN_2009__43_4_757_0
Zagaris, Antonios; Gear, C. William; Kaper, Tasso J.; Kevrekidis, Yannis G. Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 757-784. doi : 10.1051/m2an/2009026. http://www.numdam.org/articles/10.1051/m2an/2009026/
[1] Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704-718. | MR | Zbl
and ,[2] Applications of Centre Manifold Theory, Applied Mathematical Sciences 35. Springer-Verlag, New York (1981). | MR | Zbl
,[3] Low-order modeling, initializations, and the slow manifold. Tellus 47A (1995) 145-161.
, and ,[4] Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31 (1979) 53-98. | MR | Zbl
,[5] Constraint-defined manifolds: a legacy-code approach to low-dimensional computation. J. Sci. Comp. 25 (2005) 17-28. | MR
and ,[6] Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732. | MR | Zbl
, , and ,[7] Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82 (1999) 2282-2285.
,[8] Geometric singular perturbation theory, in Dynamical Systems, Montecatini Terme, L. Arnold Ed., Lecture Notes Math. 1609, Springer-Verlag, Berlin (1994) 44-118. | MR | Zbl
,[9] Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165 (2002) 66-93. | MR | Zbl
and ,[10] Iterative Methods for Linear and Nonlinear Equations, Frontiers In Applied Mathematics 16. SIAM Publications, Philadelphia (1995). | MR | Zbl
,[11] Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715-762. | MR | Zbl
, , , , and ,[12] Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16 (1979) 980-998. | MR | Zbl
,[13] Problems with Different Time Scales, in Multiple Time Scales, J.H. Brackbill and B.I. Cohen Eds., Academic Press (1985) 29-57. | MR | Zbl
,[14] Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37 (1980) 1685-1699. | MR
,[15] Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239-264.
and ,[16] Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986). | MR | Zbl
,[17] Stabilization of unstable procedures: A recursive projection method. SIAM J. Numer. Anal. 30 (1993) 1099-1120. | MR | Zbl
and ,[18] Initialization of a Lattice Boltzmann Model with Constrained Runs. Report TW444, Catholic University of Leuven, Belgium (2005).
, and ,[19] Accuracy of hybrid Lattice Boltzmann/Finite Difference schemes for reaction-diffusion systems. Multiscale Model. Sim. 6 (2007) 838-857. | MR | Zbl
, , and ,[20] Analysis of the Computational Singular Perturbation reduction method for chemical kinetics. J. Nonlin. Sci. 14 (2004) 59-91. | MR | Zbl
, and ,[21] Fast and slow dynamics for the Computational Singular Perturbation method. Multiscale Model. Sim. 2 (2004) 613-638. | MR | Zbl
, and ,[22] Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Numer. Math. (submitted).
, , , and ,- Staggered grids for multidimensional multiscale modelling, Computers and Fluids, Volume 271 (2024), p. 18 (Id/No 106167) | DOI:10.1016/j.compfluid.2023.106167 | Zbl:7833625
- Slow invariant manifolds of fast-slow systems of ODEs with physics-informed neural networks, SIAM Journal on Applied Dynamical Systems, Volume 23 (2024) no. 4, pp. 3077-3122 | DOI:10.1137/24m1656402 | Zbl:7965867
- Slow invariant manifolds of singularly perturbed systems via physics-informed machine learning, SIAM Journal on Scientific Computing, Volume 46 (2024) no. 4, p. c297-c322 | DOI:10.1137/23m1602991 | Zbl:1543.65204
- Two novel families of multiscale staggered patch schemes efficiently simulate large-scale, weakly damped, linear waves, Computer Methods in Applied Mechanics and Engineering, Volume 413 (2023), p. 21 (Id/No 116133) | DOI:10.1016/j.cma.2023.116133 | Zbl:1539.76141
- Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial information, Computers Chemical Engineering, Volume 178 (2023), p. 108343 | DOI:10.1016/j.compchemeng.2023.108343
- Data-driven control of agent-based models: an equation/variable-free machine learning approach, Journal of Computational Physics, Volume 478 (2023), p. 25 (Id/No 111953) | DOI:10.1016/j.jcp.2023.111953 | Zbl:7660326
- A numerical method for the approximation of stable and unstable manifolds of microscopic simulators, Numerical Algorithms, Volume 89 (2022) no. 3, pp. 1335-1368 | DOI:10.1007/s11075-021-01155-0 | Zbl:1491.65162
- Optimal vaccine roll-out strategies including social distancing for pandemics, iScience, Volume 25 (2022) no. 7, p. 104575 | DOI:10.1016/j.isci.2022.104575
- Slow invariant manifolds of slow-fast dynamical systems, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, Volume 31 (2021) no. 7, p. 17 (Id/No 2150112) | DOI:10.1142/s0218127421501121 | Zbl:1471.34114
- Slow Invariant Manifold of Laser with Feedback, Symmetry, Volume 13 (2021) no. 10, p. 1898 | DOI:10.3390/sym13101898
- INVITED: Slow manifold reduction for plasma science, Communications in Nonlinear Science and Numerical Simulation, Volume 89 (2020), p. 61 (Id/No 105289) | DOI:10.1016/j.cnsns.2020.105289 | Zbl:1451.82052
- Guiding center dynamics as motion on a formal slow manifold in loop space, Journal of Mathematical Physics, Volume 61 (2020) no. 1, p. 012703 | DOI:10.1063/1.5119801 | Zbl:1435.78005
- Towards differential geometric characterization of slow invariant manifolds in extended phase space: sectional curvature and flow invariance, SIAM Journal on Applied Dynamical Systems, Volume 17 (2018) no. 1, pp. 732-753 | DOI:10.1137/16m1106353 | Zbl:1396.34041
- Convergence of equation-free methods in the case of finite time scale separation with application to deterministic and stochastic systems, SIAM Journal on Applied Dynamical Systems, Volume 17 (2018) no. 4, pp. 2574-2614 | DOI:10.1137/17m1126084 | Zbl:1406.65134
- A Low-Computational-Cost Strategy to Localize Points in the Slow Manifold Proximity for Isothermal Chemical Kinetics, International Journal of Chemical Kinetics, Volume 49 (2017) no. 7, p. 477 | DOI:10.1002/kin.21091
- Exponential estimates of symplectic slow manifolds, Journal of Differential Equations, Volume 261 (2016) no. 1, pp. 56-101 | DOI:10.1016/j.jde.2016.03.003 | Zbl:1382.37055
- On unifying concepts for trajectory-based slow invariant attracting manifold computation in kinetic multiscale models, Mathematical and Computer Modelling of Dynamical Systems, Volume 22 (2016) no. 2, pp. 87-112 | DOI:10.1080/13873954.2016.1141219 | Zbl:1342.34076
- An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods, Groundwater, Volume 53 (2015) no. 1, p. 38 | DOI:10.1111/gwat.12179
- On convergence of higher order schemes for the projective integration method for stiff ordinary differential equations, Journal of Computational and Applied Mathematics, Volume 288 (2015), pp. 44-69 | DOI:10.1016/j.cam.2015.04.004 | Zbl:1320.65107
- Computing Manifolds, Multiple Time Scale Dynamics, Volume 191 (2015), p. 327 | DOI:10.1007/978-3-319-12316-5_11
- Computation of saddle-type slow manifolds using iterative methods, SIAM Journal on Applied Dynamical Systems, Volume 14 (2015) no. 2, pp. 1189-1227 | DOI:10.1137/140961948 | Zbl:1323.34025
- Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow, Traffic and Granular Flow '13 (2015), p. 423 | DOI:10.1007/978-3-319-10629-8_48
- Extending the zero-derivative principle for slow-fast dynamical systems, ZAMP. Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 5, pp. 2255-2270 | DOI:10.1007/s00033-015-0552-8 | Zbl:1330.34093
- Equation-free computation of coarse-grained center manifolds of microscopic simulators, Journal of Computational Dynamics, Volume 1 (2014) no. 2, pp. 377-389 | DOI:10.3934/jcd.2014.1.377 | Zbl:1346.37065
- An Iterative Method for the Approximation of Fibers in Slow-Fast Systems, SIAM Journal on Applied Dynamical Systems, Volume 13 (2014) no. 2, p. 861 | DOI:10.1137/120889666
- Implicit Methods for Equation-Free Analysis: Convergence Results and Analysis of Emergent Waves in Microscopic Traffic Models, SIAM Journal on Applied Dynamical Systems, Volume 13 (2014) no. 3, p. 1202 | DOI:10.1137/130913961
- Clusters of reaction rates and concentrations in protein networks such as the phosphotransferase system, The FEBS Journal, Volume 281 (2014) no. 2, p. 531 | DOI:10.1111/febs.12664
- Simulating Stochastic Inertial Manifolds by a Backward-Forward Approach, SIAM Journal on Applied Dynamical Systems, Volume 12 (2013) no. 1, p. 487 | DOI:10.1137/120881968
- Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 8, pp. 2759-2803 | DOI:10.3934/dcds.2012.32.2759 | Zbl:1245.65102
- A Multiscale Technique for Finding Slow Manifolds of Stiff Mechanical Systems, Multiscale Modeling Simulation, Volume 10 (2012) no. 4, p. 1180 | DOI:10.1137/120861461
- Towards an efficient multiscale modeling of low-dimensional reactive systems: Study of numerical closure procedures, The Journal of Chemical Physics, Volume 137 (2012) no. 20 | DOI:10.1063/1.4764109
- Lifting in hybrid lattice Boltzmann and PDE models, Computing and Visualization in Science, Volume 14 (2011) no. 2, pp. 67-78 | DOI:10.1007/s00791-011-0164-6 | Zbl:1310.82035
- A Variational Principle for Computing Slow Invariant Manifolds in Dissipative Dynamical Systems, SIAM Journal on Scientific Computing, Volume 33 (2011) no. 2, p. 703 | DOI:10.1137/100790318
- Entropy-related extremum principles for model reduction of dissipative dynamical systems, Entropy, Volume 12 (2010) no. 4, pp. 706-719 | DOI:10.3390/e12040706 | Zbl:1229.37019
- Minimal curvature trajectories: Riemannian geometry concepts for slow manifold computation in chemical kinetics, Journal of Computational Physics, Volume 229 (2010) no. 18, pp. 6512-6533 | DOI:10.1016/j.jcp.2010.05.008 | Zbl:1197.65070
- Equation-Free Multiscale Computation: Algorithms and Applications, Annual Review of Physical Chemistry, Volume 60 (2009) no. 1, p. 321 | DOI:10.1146/annurev.physchem.59.032607.093610
- Smooth initialization of lattice Boltzmann schemes, Computers Mathematics with Applications, Volume 58 (2009) no. 5, pp. 867-882 | DOI:10.1016/j.camwa.2009.02.022 | Zbl:1189.76417
- An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold, Journal of Scientific Computing, Volume 39 (2009) no. 2, pp. 167-188 | DOI:10.1007/s10915-008-9256-y | Zbl:1203.65154
- Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations, The FEBS Journal, Volume 276 (2009) no. 19, p. 5491 | DOI:10.1111/j.1742-4658.2009.07233.x
Cité par 39 documents. Sources : Crossref, zbMATH