The plane wave stability properties of the conservative schemes of Besse [SIAM J. Numer. Anal. 42 (2004) 934-952] and Fei et al. [Appl. Math. Comput. 71 (1995) 165-177] for the cubic Schrödinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.
Mots clés : finite difference method, stability, energy conservation, nonlinear Schrödinger equation, linearly implicit methods
@article{M2AN_2009__43_4_677_0, author = {Dahlby, Morten and Owren, Brynjulf}, title = {Plane wave stability of some conservative schemes for the cubic {Schr\"odinger} equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {677--687}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009022}, mrnumber = {2542871}, zbl = {1167.65449}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009022/} }
TY - JOUR AU - Dahlby, Morten AU - Owren, Brynjulf TI - Plane wave stability of some conservative schemes for the cubic Schrödinger equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 677 EP - 687 VL - 43 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009022/ DO - 10.1051/m2an/2009022 LA - en ID - M2AN_2009__43_4_677_0 ER -
%0 Journal Article %A Dahlby, Morten %A Owren, Brynjulf %T Plane wave stability of some conservative schemes for the cubic Schrödinger equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 677-687 %V 43 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009022/ %R 10.1051/m2an/2009022 %G en %F M2AN_2009__43_4_677_0
Dahlby, Morten; Owren, Brynjulf. Plane wave stability of some conservative schemes for the cubic Schrödinger equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 4, pp. 677-687. doi : 10.1051/m2an/2009022. http://www.numdam.org/articles/10.1051/m2an/2009022/
[1] A nonlinear difference scheme and inverse scattering. Studies Appl. Math. 55 (1976) 213-229. | MR | Zbl
and ,[2] Solving the nonlinear Schrödinger equation using exponential integrators. Model. Ident. Control 27 (2006) 201-218.
, and ,[3] A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934-952 (electronic). | MR | Zbl
,[4] Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8 (2008) 303-317. | MR | Zbl
, and ,[5] The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235-261. | MR | Zbl
and ,[6] Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177. | MR | Zbl
, and ,[7] Geometric numerical integration, Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics 31. Second Edition, Springer-Verlag, Berlin (2006). | MR | Zbl
, and ,[8] Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116-148. | MR | Zbl
, and ,[9] Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171 (2001) 425-447. | MR | Zbl
and ,[10] Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55 (1984) 203-230. | MR | Zbl
and ,[11] Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485-507. | MR | Zbl
and ,Cité par Sources :