Energy-preserving Runge-Kutta methods
ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 645-649.

We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical hamiltonian systems.

DOI : 10.1051/m2an/2009020
Classification : 65P10, 65L06
Mots-clés : B-series, hamiltonian systems, energy-preserving integrators, Runge-Kutta methods
@article{M2AN_2009__43_4_645_0,
     author = {Celledoni, Elena and McLachlan, Robert I. and McLaren, David I. and Owren, Brynjulf and G. Reinout W. Quispel and Wright, William M.},
     title = {Energy-preserving {Runge-Kutta} methods},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {645--649},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/m2an/2009020},
     mrnumber = {2542869},
     zbl = {1169.65348},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009020/}
}
TY  - JOUR
AU  - Celledoni, Elena
AU  - McLachlan, Robert I.
AU  - McLaren, David I.
AU  - Owren, Brynjulf
AU  - G. Reinout W. Quispel
AU  - Wright, William M.
TI  - Energy-preserving Runge-Kutta methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 645
EP  - 649
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009020/
DO  - 10.1051/m2an/2009020
LA  - en
ID  - M2AN_2009__43_4_645_0
ER  - 
%0 Journal Article
%A Celledoni, Elena
%A McLachlan, Robert I.
%A McLaren, David I.
%A Owren, Brynjulf
%A G. Reinout W. Quispel
%A Wright, William M.
%T Energy-preserving Runge-Kutta methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 645-649
%V 43
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009020/
%R 10.1051/m2an/2009020
%G en
%F M2AN_2009__43_4_645_0
Celledoni, Elena; McLachlan, Robert I.; McLaren, David I.; Owren, Brynjulf; G. Reinout W. Quispel; Wright, William M. Energy-preserving Runge-Kutta methods. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 645-649. doi : 10.1051/m2an/2009020. http://www.numdam.org/articles/10.1051/m2an/2009020/

[1] M.-P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows. Math. Comput. 66 (1997) 1461-1486. | MR | Zbl

[2] E. Celledoni, R.I. Mclachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Preprint.

[3] P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575-590. | MR | Zbl

[4] G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987) 1-13. | MR | Zbl

[5] E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699-709. | MR | Zbl

[6] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006). | MR | Zbl

[7] A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000) 69-81. | MR | Zbl

[8] R.I. Mclachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35 (1998) 586-599. | MR | Zbl

[9] R.I. Mclachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357 (1999) 1021-1046. | MR | Zbl

[10] G.R.W. Quispel and D.I. Mclaren, A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008) 045206. | MR | Zbl

[11] J.E. Scully, A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).

[12] L.F. Shampine, Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12B (1986) 1287-1296. | MR | Zbl

  • Zhou, Jingmin; Jing, Gang; Zhao, Teng; Tian, Fengrui; Xu, Xiaofei; Zhao, Shuangliang Unraveling Flow Effect on Capacitive Energy Extraction from Salinity Gradients, ACS Applied Materials Interfaces, Volume 16 (2024) no. 8, p. 10052 | DOI:10.1021/acsami.3c16738
  • Brugnano, Luigi; Iavernaro, Felice, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: ICNAAM2022, Volume 3094 (2024), p. 020001 | DOI:10.1063/5.0210145
  • Myhr, Håkon Noren; Eidnes, Sølve Derivative-free discrete gradient methods, Journal of Computational Dynamics, Volume 11 (2024) no. 3, pp. 256-273 | DOI:10.3934/jcd.2024004 | Zbl:1545.65481
  • McLachlan, Robert I. Runge–Kutta methods determined from extended phase space methods for Hamiltonian systems, Numerical Algorithms (2024) | DOI:10.1007/s11075-024-01976-9
  • Ketcheson, David I.; Ranocha, Hendrik Computing with B-series, ACM Transactions on Mathematical Software, Volume 49 (2023) no. 2, p. 23 (Id/No 13) | DOI:10.1145/3573384 | Zbl:7910028
  • Mehrmann, Volker; Unger, Benjamin Control of port-Hamiltonian differential-algebraic systems and applications, Acta Numerica, Volume 32 (2023), pp. 395-515 | DOI:10.1017/s0962492922000083 | Zbl:7736658
  • Linders, Viktor; Ranocha, Hendrik; Birken, Philipp Resolving entropy growth from iterative methods, BIT, Volume 63 (2023) no. 4, p. 26 (Id/No 45) | DOI:10.1007/s10543-023-00992-w | Zbl:1529.65015
  • Li, Xiuyan; Wang, Zhenyu; Ma, Qiang; Ding, Xiaohua Conservative Continuous-Stage Stochastic Runge–Kutta Methods for Stochastic Differential Equations, Fractal and Fractional, Volume 7 (2023) no. 1, p. 83 | DOI:10.3390/fractalfract7010083
  • Dai, Dihan; Epshteyn, Yekaterina; Narayan, Akil Non-dissipative and structure-preserving emulators via spherical optimization, Information and Inference: A Journal of the IMA, Volume 12 (2023) no. 1, p. 494 | DOI:10.1093/imaiai/iaac021
  • Tapley, Benjamin K. On the preservation of second integrals by Runge-Kutta methods, Journal of Computational Dynamics, Volume 10 (2023) no. 2, pp. 304-322 | DOI:10.3934/jcd.2023001 | Zbl:1526.37088
  • Amodio, Pierluigi; Brugnano, Luigi; Iavernaro, Felice (Spectral) Chebyshev collocation methods for solving differential equations, Numerical Algorithms, Volume 93 (2023) no. 4, pp. 1613-1638 | DOI:10.1007/s11075-022-01482-w | Zbl:1523.65100
  • D’Ambrosio, Raffaele Geometric Numerical Integration, Numerical Approximation of Ordinary Differential Problems, Volume 148 (2023), p. 241 | DOI:10.1007/978-3-031-31343-1_8
  • D’Ambrosio, Raffaele Numerical Methods for Stochastic Differential Equations, Numerical Approximation of Ordinary Differential Problems, Volume 148 (2023), p. 291 | DOI:10.1007/978-3-031-31343-1_9
  • D'Ambrosio, Raffaele; Di Giovacchino, Stefano Long-term analysis of stochastic Hamiltonian systems under time discretizations, SIAM Journal on Scientific Computing, Volume 45 (2023) no. 2, p. a257-a288 | DOI:10.1137/21m1458612 | Zbl:1512.65014
  • Brugnano, Luigi; Iavernaro, Felice A general framework for solving differential equations, Annali dell'Università di Ferrara. Sezione VII. Scienze Matematiche, Volume 68 (2022) no. 2, pp. 243-258 | DOI:10.1007/s11565-022-00409-6 | Zbl:1503.65312
  • Brugnano, Luigi; Frasca-Caccia, Gianluca; Iavernaro, Felice; Vespri, Vincenzo A new framework for polynomial approximation to differential equations, Advances in Computational Mathematics, Volume 48 (2022) no. 6, p. 36 (Id/No 76) | DOI:10.1007/s10444-022-09992-w | Zbl:1507.65115
  • Eidnes, Sølve Order theory for discrete gradient methods, BIT, Volume 62 (2022) no. 4, pp. 1207-1255 | DOI:10.1007/s10543-022-00909-z | Zbl:1507.65288
  • Cohen, David; Vilmart, Gilles Drift-preserving numerical integrators for stochastic Poisson systems, International Journal of Computer Mathematics, Volume 99 (2022) no. 1, pp. 4-20 | DOI:10.1080/00207160.2021.1922679 | Zbl:1480.65014
  • Shi, Wei; Liu, Kai A dissipation-preserving integrator for damped oscillatory Hamiltonian systems, Journal of Computational Mathematics, Volume 40 (2022) no. 4, pp. 573-591 | DOI:10.4208/jcm.2011-m2019-0272 | Zbl:1499.65294
  • Tapley, Benjamin K. Geometric integration of ODEs using multiple quadratic auxiliary variables, SIAM Journal on Scientific Computing, Volume 44 (2022) no. 4, p. a2651-a2668 | DOI:10.1137/21m1442644 | Zbl:1497.65256
  • Hong, Qi; Gong, Yuezheng; Zhao, Jia; Wang, Qi Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint, Applied Numerical Mathematics, Volume 170 (2021), pp. 321-339 | DOI:10.1016/j.apnum.2021.08.002 | Zbl:1501.65080
  • Viorel, Adrian; Alecsa, Cristian D.; Pinţa, Titus O. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 7, pp. 3319-3341 | DOI:10.3934/dcds.2020407 | Zbl:1471.37073
  • Wu, Xinyuan; Wang, Bin Volume-Preserving Exponential Integrators, Geometric Integrators for Differential Equations with Highly Oscillatory Solutions (2021), p. 179 | DOI:10.1007/978-981-16-0147-7_6
  • Wu, Xinyuan; Wang, Bin Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations, Geometric Integrators for Differential Equations with Highly Oscillatory Solutions (2021), p. 263 | DOI:10.1007/978-981-16-0147-7_9
  • Jiang, Chaolong; Wang, Yushun; Gong, Yuezheng Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations, Journal of Computational and Applied Mathematics, Volume 388 (2021), p. 17 (Id/No 113298) | DOI:10.1016/j.cam.2020.113298 | Zbl:1456.65090
  • Cohen, David; Debrabant, Kristian; Rößler, Andreas High order numerical integrators for single integrand Stratonovich SDEs, Applied Numerical Mathematics, Volume 158 (2020), pp. 264-270 | DOI:10.1016/j.apnum.2020.08.002 | Zbl:1452.65120
  • Abdi, Ali; Hojjati, Gholamreza Projection of second derivative methods for ordinary differential equations with invariants, Bulletin of the Iranian Mathematical Society, Volume 46 (2020) no. 1, pp. 99-113 | DOI:10.1007/s41980-019-00243-1 | Zbl:1429.65141
  • Frasca-Caccia, Gianluca; Hydon, Peter Ellsworth Simple bespoke preservation of two conservation laws, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 2, p. 1294 | DOI:10.1093/imanum/dry087
  • Li, Dongfang; Sun, Weiwei Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, Journal of Scientific Computing, Volume 83 (2020) no. 3, p. 17 (Id/No 65) | DOI:10.1007/s10915-020-01245-6 | Zbl:1442.65220
  • Polzin, Thomas; Niethammer, Marc; Vialard, François-Xavier; Modersitzki, Jan A discretize–optimize approach for LDDMM registration, Riemannian Geometric Statistics in Medical Image Analysis (2020), p. 479 | DOI:10.1016/b978-0-12-814725-2.00022-4
  • Tang, Wensheng; Zhang, Jingjing Symmetric integrators based on continuous-stage Runge-Kutta-Nyström methods for reversible systems, Applied Mathematics and Computation, Volume 361 (2019), pp. 1-12 | DOI:10.1016/j.amc.2019.05.013 | Zbl:1429.65155
  • Tang, Wensheng; Sun, Yajuan; Zhang, Jingjing High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods, Applied Mathematics and Computation, Volume 361 (2019), pp. 670-679 | DOI:10.1016/j.amc.2019.06.031 | Zbl:1429.65299
  • Li, Xiuyan; Ma, Qiang; Ding, Xiaohua High-order energy-preserving methods for stochastic Poisson systems, East Asian Journal on Applied Mathematics, Volume 9 (2019) no. 3, pp. 465-484 | DOI:10.4208/eajam.290518.310718 | Zbl:1459.60128
  • Rojas, Junior; Liu, Tiantian; Kavan, Ladislav Average Vector Field Integration for St. Venant-Kirchhoff Deformable Models, IEEE Transactions on Visualization and Computer Graphics, Volume 25 (2019) no. 8, p. 2529 | DOI:10.1109/tvcg.2018.2851233
  • Wang, Bin; Wu, Xinyuan The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein–Gordon equations, IMA Journal of Numerical Analysis, Volume 39 (2019) no. 4, p. 2016 | DOI:10.1093/imanum/dry047
  • Wang, Bin; Wu, Xinyuan Volume-preserving exponential integrators and their applications, Journal of Computational Physics, Volume 396 (2019), pp. 867-887 | DOI:10.1016/j.jcp.2019.07.026 | Zbl:1452.37083
  • Li, Xiuyan; Zhang, Chiping; Ma, Qiang; Ding, Xiaohua Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems, Taiwanese Journal of Mathematics, Volume 23 (2019) no. 3, pp. 703-725 | DOI:10.11650/tjm/180803 | Zbl:1426.60076
  • Tang, Wensheng; Zhang, Jingjing Symplecticity-preserving continuous-stage Runge-Kutta-Nyström methods, Applied Mathematics and Computation, Volume 323 (2018), pp. 204-219 | DOI:10.1016/j.amc.2017.11.054 | Zbl:1426.65203
  • Li, Haochen; Jiang, Chaolong; Lv, Zhongquan A Galerkin energy-preserving method for two dimensional nonlinear Schrödinger equation, Applied Mathematics and Computation, Volume 324 (2018), pp. 16-27 | DOI:10.1016/j.amc.2017.11.056 | Zbl:1427.65252
  • Tang, Wensheng A note on continuous-stage Runge-Kutta methods, Applied Mathematics and Computation, Volume 339 (2018), pp. 231-241 | DOI:10.1016/j.amc.2018.07.044 | Zbl:1429.65154
  • Brugnano, Luigi; Iavernaro, Felice Line integral solution of differential problems, Axioms, Volume 7 (2018) no. 2, p. 28 (Id/No 36) | DOI:10.3390/axioms7020036 | Zbl:1432.65181
  • Cai, Wenjun; Li, Haochen; Wang, Yushun Partitioned averaged vector field methods, Journal of Computational Physics, Volume 370 (2018), pp. 25-42 | DOI:10.1016/j.jcp.2018.05.009 | Zbl:1398.65331
  • Li, Haochen; Mu, Zhenguo; Wang, Yushun An energy-preserving Crank-Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrödinger equation, Journal of Computational and Applied Mathematics, Volume 344 (2018), pp. 245-258 | DOI:10.1016/j.cam.2018.05.025 | Zbl:1457.65145
  • Minjeaud, Sebastian; Pasquetti, Richard High order C0-continuous Galerkin schemes for high order PDEs, conservation of quadratic invariants and application to the Korteweg-de Vries model, Journal of Scientific Computing, Volume 74 (2018) no. 1, pp. 491-518 | DOI:10.1007/s10915-017-0455-2 | Zbl:1398.65253
  • Celledoni, Elena; Høiseth, Eirik Hoel; Ramzina, Nataliya Passivity-preserving splitting methods for rigid body systems, Multibody System Dynamics, Volume 44 (2018) no. 3, pp. 251-275 | DOI:10.1007/s11044-018-9628-5 | Zbl:1407.93244
  • Wu, Xinyuan; Wang, Bin Functionally Fitted Continuous Finite Element Methods for Oscillatory Hamiltonian Systems, Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations (2018), p. 1 | DOI:10.1007/978-981-10-9004-2_1
  • Wan, Andy T. S.; Nave, Jean-Christophe On the arbitrarily long-term stability of conservative methods, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, pp. 2751-2775 | DOI:10.1137/16m1085929 | Zbl:1405.65085
  • Hong, Qi; Wang, Yushun; Du, Qikui Two new energy-preserving algorithms for generalized fifth-order KdV equation, Advances in Applied Mathematics and Mechanics, Volume 9 (2017) no. 5, pp. 1206-1224 | DOI:10.4208/aamm.oa-2016-0044 | Zbl:1488.65503
  • Li, Haochen; Wang, Yushun An averaged vector field Legendre spectral element method for the nonlinear Schrödinger equation, International Journal of Computer Mathematics, Volume 94 (2017) no. 6, pp. 1196-1218 | DOI:10.1080/00207160.2016.1184264 | Zbl:1408.65073
  • Celledoni, Elena; Høiseth, Eirik Hoel The averaged Lagrangian method, Journal of Computational and Applied Mathematics, Volume 316 (2017), pp. 161-174 | DOI:10.1016/j.cam.2016.09.047 | Zbl:1375.65172
  • Wan, Andy T. S.; Bihlo, Alexander; Nave, Jean-Christophe Conservative methods for dynamical systems, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 5, pp. 2255-2285 | DOI:10.1137/16m110719x | Zbl:1375.65104
  • Bhatt, Ashish; Moore, Brian E. Structure-preserving exponential Runge-Kutta methods, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 2, p. a593-a612 | DOI:10.1137/16m1071171 | Zbl:1365.65271
  • Tang, Wensheng; Lang, Guangming; Luo, Xuqiong Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage, Applied Mathematics and Computation, Volume 286 (2016), pp. 279-287 | DOI:10.1016/j.amc.2016.04.026 | Zbl:1410.65264
  • Kojima, H. Invariants preserving schemes based on explicit Runge-Kutta methods, BIT, Volume 56 (2016) no. 4, pp. 1317-1337 | DOI:10.1007/s10543-016-0608-y | Zbl:1358.65046
  • Gong, Yuezheng; Wang, Yushun An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs, Communications in Computational Physics, Volume 20 (2016) no. 5, p. 1313 | DOI:10.4208/cicp.231014.110416a
  • Extensions, Line Integral Methods for Conservative Problems (2016), p. 192 | DOI:10.1201/b19319-9
  • Miyatake, Yuto; Butcher, John C. A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 3, pp. 1993-2013 | DOI:10.1137/15m1020861 | Zbl:1342.65232
  • Li, Yu-Wen; Wu, Xinyuan Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 4, pp. 2036-2059 | DOI:10.1137/15m1032752 | Zbl:1342.65231
  • Calvo, M.; Laburta, M. P.; Montijano, J. I.; Rández, L. Runge-Kutta projection methods with low dispersion and dissipation errors, Advances in Computational Mathematics, Volume 41 (2015) no. 1, pp. 231-251 | DOI:10.1007/s10444-014-9355-2 | Zbl:1308.65115
  • Brugnano, L.; Frasca Caccia, G.; Iavernaro, F. Energy conservation issues in the numerical solution of the semilinear wave equation, Applied Mathematics and Computation, Volume 270 (2015), pp. 842-870 | DOI:10.1016/j.amc.2015.08.078 | Zbl:1410.65477
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato Analysis of Hamiltonian boundary value methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems, Communications in Nonlinear Science and Numerical Simulation, Volume 20 (2015) no. 3, pp. 650-667 | DOI:10.1016/j.cnsns.2014.05.030 | Zbl:1304.65262
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato Reprint of “Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems”, Communications in Nonlinear Science and Numerical Simulation, Volume 21 (2015) no. 1-3, pp. 34-51 | DOI:10.1016/j.cnsns.2014.10.015 | Zbl:1329.65304
  • Laburta, M. P.; Montijano, J. I.; Rández, L.; Calvo, M. Numerical methods for non conservative perturbations of conservative problems, Computer Physics Communications, Volume 187 (2015), pp. 72-82 | DOI:10.1016/j.cpc.2014.10.012 | Zbl:1348.70004
  • Wu, Xinyuan; Liu, Kai; Shi, Wei Efficient Energy-Preserving Integrators for Multi-frequency Oscillatory Hamiltonian Systems, Structure-Preserving Algorithms for Oscillatory Differential Equations II (2015), p. 69 | DOI:10.1007/978-3-662-48156-1_4
  • Tang, Wensheng; Sun, Yajuan Construction of Runge-Kutta type methods for solving ordinary differential equations, Applied Mathematics and Computation, Volume 234 (2014), pp. 179-191 | DOI:10.1016/j.amc.2014.02.042 | Zbl:1298.65112
  • Miyatake, Yuto An energy-preserving exponentially-fitted continuous stage Runge-Kutta method for Hamiltonian systems, BIT, Volume 54 (2014) no. 3, pp. 777-799 | DOI:10.1007/s10543-014-0474-4 | Zbl:1304.65263
  • Gong, Yuezheng; Cai, Jiaxiang; Wang, Yushun Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, Journal of Computational Physics, Volume 279 (2014), pp. 80-102 | DOI:10.1016/j.jcp.2014.09.001 | Zbl:1352.65647
  • Cieśliński, Jan L. Improving the accuracy of the AVF method, Journal of Computational and Applied Mathematics, Volume 259 (2014), pp. 233-243 | DOI:10.1016/j.cam.2013.08.008 | Zbl:1291.65360
  • Celledoni, Elena; Owren, Brynjulf; Sun, Yajuan The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method, Mathematics of Computation, Volume 83 (2014) no. 288, pp. 1689-1700 | DOI:10.1090/s0025-5718-2014-02805-6 | Zbl:1296.65182
  • Akkoyunlu, Canan; Karasözen, Bülent Average Vector Field Splitting Method for Nonlinear Schrödinger Equation, Chaos and Complex Systems (2013), p. 245 | DOI:10.1007/978-3-642-33914-1_32
  • Wang, Dongling; Xiao, Aiguo; Li, Xueyang Parametric symplectic partitioned Runge–Kutta methods with energy-preserving properties for Hamiltonian systems, Computer Physics Communications, Volume 184 (2013) no. 2, p. 303 | DOI:10.1016/j.cpc.2012.09.012
  • Yaguchi, Takaharu Lagrangian approach to deriving energy-preserving numerical schemes for the Euler–Lagrange partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 47 (2013) no. 5, p. 1493 | DOI:10.1051/m2an/2013080
  • Wu, Xinyuan; Wang, Bin; Shi, Wei Efficient energy-preserving integrators for oscillatory Hamiltonian systems, Journal of Computational Physics, Volume 235 (2013), pp. 587-605 | DOI:10.1016/j.jcp.2012.10.015 | Zbl:1291.65363
  • Celledoni, Elena; McLachlan, Robert I; Owren, Brynjulf; Quispel, G R W Geometric properties of Kahan's method, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 2, p. 025201 | DOI:10.1088/1751-8113/46/2/025201
  • Frank, Jason E.; Gottwald, Georg A. Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere, Physica D: Nonlinear Phenomena, Volume 254 (2013), p. 46 | DOI:10.1016/j.physd.2013.03.010
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: the case of symplecticity, Applied Mathematics and Computation, Volume 218 (2012) no. 16, pp. 8056-8063 | DOI:10.1016/j.amc.2011.03.022 | Zbl:1245.65085
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato A two-step, fourth-order method with energy preserving properties, Computer Physics Communications, Volume 183 (2012) no. 9, pp. 1860-1868 | DOI:10.1016/j.cpc.2012.04.002 | Zbl:1305.65238
  • Celledoni, E.; Grimm, V.; McLachlan, R. I.; McLaren, D. I.; O'Neale, D.; Owren, B.; Quispel, G. R. W. Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, Journal of Computational Physics, Volume 231 (2012) no. 20, pp. 6770-6789 | DOI:10.1016/j.jcp.2012.06.022 | Zbl:1284.65184
  • Brugnano, L.; Calvo, M.; Montijano, J. I.; Rández, L. Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 16, pp. 3890-3904 | DOI:10.1016/j.cam.2012.02.033 | Zbl:1247.65092
  • Brugnano, Luigi; Iavernaro, Felice Line integral methods which preserve all invariants of conservative problems, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 16, pp. 3905-3919 | DOI:10.1016/j.cam.2012.03.026 | Zbl:1246.65108
  • Wang, Bin; Wu, Xinyuan A new high precision energy-preserving integrator for system of oscillatory second-order differential equations, Physics Letters. A, Volume 376 (2012) no. 14, pp. 1185-1190 | DOI:10.1016/j.physleta.2012.02.040 | Zbl:1255.70013
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato Energy- and Quadratic Invariants–Preserving Integrators Based upon Gauss Collocation Formulae, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 6, p. 2897 | DOI:10.1137/110856617
  • Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato A note on the efficient implementation of Hamiltonian BVMs, Journal of Computational and Applied Mathematics, Volume 236 (2011) no. 3, pp. 375-383 | DOI:10.1016/j.cam.2011.07.022 | Zbl:1228.65107
  • Dahlby, Morten; Owren, Brynjulf A General Framework for Deriving Integral Preserving Numerical Methods for PDEs, SIAM Journal on Scientific Computing, Volume 33 (2011) no. 5, p. 2318 | DOI:10.1137/100810174
  • Celledoni, Elena; McLachlan, Robert I.; Owren, Brynjulf; Quispel, G. R. W. Energy-preserving integrators and the structure of B-series, Foundations of Computational Mathematics, Volume 10 (2010) no. 6, pp. 673-693 | DOI:10.1007/s10208-010-9073-1 | Zbl:1205.65325

Cité par 85 documents. Sources : Crossref, zbMATH