On energy conservation of the simplified Takahashi-Imada method
ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 631-644.

In long-time numerical integration of hamiltonian systems, and especially in molecular dynamics simulation, it is important that the energy is well conserved. For symplectic integrators applied with sufficiently small step size, this is guaranteed by the existence of a modified hamiltonian that is exactly conserved up to exponentially small terms. This article is concerned with the simplified Takahashi-Imada method, which is a modification of the Störmer-Verlet method that is as easy to implement but has improved accuracy. This integrator is symmetric and volume-preserving, but no longer symplectic. We study its long-time energy conservation and give theoretical arguments, supported by numerical experiments, which show the possibility of a drift in the energy (linear or like a random walk). With respect to energy conservation, this article provides empirical and theoretical data concerning the importance of using a symplectic integrator.

DOI : 10.1051/m2an/2009019
Classification : 37M15, 37N99, 65L06, 65P10
Mots-clés : symmetric and symplectic integrators, geometric numerical integration, modified differential equation, energy conservation, Hénon-Heiles problem, N-body problem in molecular dynamics
@article{M2AN_2009__43_4_631_0,
     author = {Hairer, Ernst and McLachlan, Robert I. and Skeel, Robert D.},
     title = {On energy conservation of the simplified {Takahashi-Imada} method},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {631--644},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/m2an/2009019},
     mrnumber = {2542868},
     zbl = {1172.65067},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009019/}
}
TY  - JOUR
AU  - Hairer, Ernst
AU  - McLachlan, Robert I.
AU  - Skeel, Robert D.
TI  - On energy conservation of the simplified Takahashi-Imada method
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 631
EP  - 644
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009019/
DO  - 10.1051/m2an/2009019
LA  - en
ID  - M2AN_2009__43_4_631_0
ER  - 
%0 Journal Article
%A Hairer, Ernst
%A McLachlan, Robert I.
%A Skeel, Robert D.
%T On energy conservation of the simplified Takahashi-Imada method
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 631-644
%V 43
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009019/
%R 10.1051/m2an/2009019
%G en
%F M2AN_2009__43_4_631_0
Hairer, Ernst; McLachlan, Robert I.; Skeel, Robert D. On energy conservation of the simplified Takahashi-Imada method. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 631-644. doi : 10.1051/m2an/2009019. http://www.numdam.org/articles/10.1051/m2an/2009019/

[1] S. Blanes, F. Casas and A. Murua, On the numerical integration of ordinary differential equations by processed methods. SIAM J. Numer. Anal. 42 (2004) 531-552. | MR | Zbl

[2] J.C. Butcher, The effective order of Runge-Kutta methods, in Proceedings of Conference on the Numerical Solution of Differential Equations, J.L. Morris Ed., Lect. Notes Math. 109 (1969) 133-139. | MR | Zbl

[3] P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575-590. | MR | Zbl

[4] D. Cottrell and P.F. Tupper, Energy drift in molecular dynamics simulations. BIT 47 (2007) 507-523. | MR | Zbl

[5] E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699-709. | MR | Zbl

[6] E. Hairer and C. Lubich, Symmetric multistep methods over long times. Numer. Math. 97 (2004) 699-723. | MR | Zbl

[7] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31. Springer-Verlag, Berlin, 2nd Edition (2006). | MR | Zbl

[8] R.I. Mclachlan and M. Perlmutter, Energy drift in reversible time integration. J. Phys. A 37 (2004) L593-L598. | MR | Zbl

[9] I.P. Omelyan, Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations. Phys. Rev. E 74 (2006) 036703. | MR

[10] G. Rowlands, A numerical algorithm for Hamiltonian systems. J. Comput. Phys. 97 (1991) 235-239. | MR | Zbl

[11] R.D. Skeel, G. Zhang and T. Schlick, A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput. 18 (1997) 203-222. | MR | Zbl

[12] R.D. Skeel, What makes molecular dynamics work? SIAM J. Sci. Comput. 31 (2009) 1363-1378. | MR

[13] D. Stoffer, On reversible and canonical integration methods. Technical Report SAM-Report No. 88-05, ETH-Zürich, Switzerland (1988).

[14] M. Takahashi and M. Imada, Monte Carlo calculation of quantum systems. II. Higher order correction. J. Phys. Soc. Jpn. 53 (1984) 3765-3769.

[15] P.F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems. SIAM J. Appl. Dyn. Syst. 4 (2005) 563-587. | MR | Zbl

[16] J. Wisdom, M. Holman and J. Touma, Symplectic correctors, in Integration Algorithms and Classical Mechanics, J.E. Marsden, G.W. Patrick and W.F. Shadwick Eds., Amer. Math. Soc., Providence R.I. (1996) 217-244. | MR | Zbl

  • Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco Hessian-free force-gradient integrators, Computer Physics Communications, Volume 309 (2025), p. 109478 | DOI:10.1016/j.cpc.2024.109478
  • Hernandez, David M; Dehnen, Walter Multiple time-step reversible N-body integrators for close encounters in planetary systems, Monthly Notices of the Royal Astronomical Society, Volume 530 (2024) no. 4, p. 3870 | DOI:10.1093/mnras/stae985
  • Lu, Tiger; Hernandez, David M; Rein, Hanno trace: a code for time-reversible astrophysical close encounters, Monthly Notices of the Royal Astronomical Society, Volume 533 (2024) no. 3, p. 3708 | DOI:10.1093/mnras/stae1982
  • Zafar, Abdullah; Khan, Majid Energy behavior of Boris algorithm, Chinese Physics B, Volume 30 (2021) no. 5, p. 055203 | DOI:10.1088/1674-1056/abd161
  • Ranocha, Hendrik; Ketcheson, David I. Relaxation Runge–Kutta Methods for Hamiltonian Problems, Journal of Scientific Computing, Volume 84 (2020) no. 1 | DOI:10.1007/s10915-020-01277-y
  • Liu, Changying; Wu, Xinyuan; Shi, Wei New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions, Applied Mathematics and Computation, Volume 339 (2018), p. 588 | DOI:10.1016/j.amc.2018.07.059
  • Hairer, Ernst; Lubich, Christian Energy behaviour of the Boris method for charged-particle dynamics, BIT Numerical Mathematics, Volume 58 (2018) no. 4, p. 969 | DOI:10.1007/s10543-018-0713-1
  • Hernandez, David M; Bertschinger, Edmund Time-symmetric integration in astrophysics, Monthly Notices of the Royal Astronomical Society, Volume 475 (2018) no. 4, p. 5570 | DOI:10.1093/mnras/sty184
  • Shi, Wei; Liu, Kai; Wu, Xinyuan; Liu, Changying An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions, Calcolo, Volume 54 (2017) no. 4, p. 1379 | DOI:10.1007/s10092-017-0232-5
  • Wang, Bin; Iserles, Arieh; Wu, Xinyuan Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems, Foundations of Computational Mathematics, Volume 16 (2016) no. 1, p. 151 | DOI:10.1007/s10208-014-9241-9
  • He, Yang; Sun, Yajuan; Liu, Jian; Qin, Hong Higher order volume-preserving schemes for charged particle dynamics, Journal of Computational Physics, Volume 305 (2016), p. 172 | DOI:10.1016/j.jcp.2015.10.032
  • Aoues, Said; Eberard, Damien; Marquis-Favre, Wilfrid, 2015 54th IEEE Conference on Decision and Control (CDC) (2015), p. 4388 | DOI:10.1109/cdc.2015.7402904
  • Cohen, David; Gauckler, Ludwig; Hairer, Ernst; Lubich, Christian Long-term analysis of numerical integrators for oscillatory Hamiltonian systems under minimal non-resonance conditions, BIT Numerical Mathematics, Volume 55 (2015) no. 3, p. 705 | DOI:10.1007/s10543-014-0527-8
  • Leimkuhler, Ben; Matthews, Charles Analyzing Geometric Integrators, Molecular Dynamics, Volume 39 (2015), p. 97 | DOI:10.1007/978-3-319-16375-8_3
  • Wu, Xinyuan; Liu, Kai; Shi, Wei Trigonometric Fourier Collocation Methods for Multi-frequency Oscillatory Systems, Structure-Preserving Algorithms for Oscillatory Differential Equations II (2015), p. 117 | DOI:10.1007/978-3-662-48156-1_6
  • Wu, Xinyuan; Liu, Kai; Shi, Wei Efficient Energy-Preserving Integrators for Multi-frequency Oscillatory Hamiltonian Systems, Structure-Preserving Algorithms for Oscillatory Differential Equations II (2015), p. 69 | DOI:10.1007/978-3-662-48156-1_4
  • Console, Paola; Hairer, Ernst Long-Term Stability of Symmetric Partitioned Linear Multistep Methods, Current Challenges in Stability Issues for Numerical Differential Equations, Volume 2082 (2014), p. 1 | DOI:10.1007/978-3-319-01300-8_1
  • Wu, Xinyuan; Wang, Bin; Shi, Wei Efficient energy-preserving integrators for oscillatory Hamiltonian systems, Journal of Computational Physics, Volume 235 (2013), p. 587 | DOI:10.1016/j.jcp.2012.10.015
  • Xie, Zheng Wave equation simulation on manifold by unconditional stable schemes, Applied Mathematics and Computation, Volume 218 (2012) no. 15, p. 7967 | DOI:10.1016/j.amc.2012.02.028
  • Celledoni, Elena; McLachlan, Robert I.; Owren, Brynjulf; Quispel, G. R. W. Energy-Preserving Integrators and the Structure of B-series, Foundations of Computational Mathematics, Volume 10 (2010) no. 6, p. 673 | DOI:10.1007/s10208-010-9073-1

Cité par 20 documents. Sources : Crossref