We derive a posteriori estimates for a discretization in space of the standard Cahn-Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.
Mots-clés : Cahn-Hilliard equation, obstacle free energy, linear finite elements, a posteriori estimates, adaptive numerical methods
@article{M2AN_2009__43_5_1003_0, author = {Ba\v{n}as, \v{L}ubom{\'\i}r and N\"urnberg, Robert}, title = {A posteriori estimates for the {Cahn-Hilliard} equation with obstacle free energy}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1003--1026}, publisher = {EDP-Sciences}, volume = {43}, number = {5}, year = {2009}, doi = {10.1051/m2an/2009015}, mrnumber = {2559742}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009015/} }
TY - JOUR AU - Baňas, Ľubomír AU - Nürnberg, Robert TI - A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 1003 EP - 1026 VL - 43 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009015/ DO - 10.1051/m2an/2009015 LA - en ID - M2AN_2009__43_5_1003_0 ER -
%0 Journal Article %A Baňas, Ľubomír %A Nürnberg, Robert %T A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 1003-1026 %V 43 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009015/ %R 10.1051/m2an/2009015 %G en %F M2AN_2009__43_5_1003_0
Baňas, Ľubomír; Nürnberg, Robert. A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 1003-1026. doi : 10.1051/m2an/2009015. http://www.numdam.org/articles/10.1051/m2an/2009015/
[1] The convergence of solutions of the Cahn-Hilliard equation to the solution of the Hele-Shaw model. Arch. Rational Mech. Anal. 128 (1994) 165-205. | MR | Zbl
, and ,[2] Adaptive finite element methods for Cahn-Hilliard equations. J. Comput. Appl. Math. 218 (2008) 2-11. | MR | Zbl
and ,[3] Finite element approximation of a three dimensional phase field model for void electromigration. J. Sci. Comp. 37 (2008) 202-232. | MR
and ,[4] Phase field computations for surface diffusion and void electromigration in . Comput. Vis. Sci. (2008), doi: 10.1007/s00791-008-0114-0.
and ,[5] Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997) 1-34. | MR | Zbl
and ,[6] Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | MR | Zbl
, and ,[7] Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42 (2004) 738-772. | MR | Zbl
, and ,[8] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. European J. Appl. Math. 2 (1991) 233-279. | MR | Zbl
and ,[9] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. Appl. Math. 3 (1992) 147-179. | MR | Zbl
and ,[10] A posteriori error estimators for obstacle problems - another look. Numer. Math. 101 (2005) 415-421. | MR | Zbl
,[11] On spinodal decomposition. Acta Metall. 9 (1961) 795-801.
,[12] Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.
and ,[13] Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differ. Equ. 19 (1994) 1371-1395. | MR | Zbl
,[14] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR | Zbl
and ,[15] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl
,[16] On the Cahn-Hilliard equation. Arch. Rational Mech. Anal. 96 (1986) 339-357. | MR | Zbl
and ,[17] A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54 (1989) 575-590. | MR | Zbl
, and ,[18] Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99 (2004) 47-84. | MR | Zbl
and ,[19] A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow. J. Comput. Math. 26 (2008) 767-796. | MR | Zbl
and ,[20] Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47 (2008) 1721-1743. | MR | Zbl
and ,[21] An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV 14 (2008) 540-560. | Numdam | MR | Zbl
, , and ,[22] Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511-543. | MR | Zbl
, and ,[23] Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512. | Numdam | MR | Zbl
,[24] A posteriori error analysis for parabolic variational inequalities. ESAIM: M2AN 41 (2007) 485-511. | Numdam | MR | Zbl
, , and ,[25] Positivity preserving finite element approximation. Math. Comp. 71 (2002) 1405-1419. | MR | Zbl
and ,[26] Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A 422 (1989) 261-278. | MR | Zbl
,[27] Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | MR | Zbl
,[28] On a posteriori error estimation for constant obstacle problems, in Numerical methods for viscosity solutions and applications (Heraklion, 1999), M. Falcone and C. Makridakis Eds., Ser. Adv. Math. Appl. Sci. 59, World Sci. Publ., River Edge, USA (2001) 221-234. | MR | Zbl
,[29] A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley, New York (1996). | Zbl
,Cité par Sources :