This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law on a closed riemannian manifold For an initial value in BV() we will show that these schemes converge with a convergence rate towards the entropy solution. When is -dimensional the schemes are TVD and we will show that this improves the convergence rate to
Mots clés : finite volume method, conservation law, curved manifold
@article{M2AN_2009__43_5_929_0, author = {Giesselmann, Jan}, title = {A convergence result for finite volume schemes on riemannian manifolds}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {929--955}, publisher = {EDP-Sciences}, volume = {43}, number = {5}, year = {2009}, doi = {10.1051/m2an/2009013}, mrnumber = {2559739}, zbl = {1173.74454}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009013/} }
TY - JOUR AU - Giesselmann, Jan TI - A convergence result for finite volume schemes on riemannian manifolds JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 929 EP - 955 VL - 43 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009013/ DO - 10.1051/m2an/2009013 LA - en ID - M2AN_2009__43_5_929_0 ER -
%0 Journal Article %A Giesselmann, Jan %T A convergence result for finite volume schemes on riemannian manifolds %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 929-955 %V 43 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009013/ %R 10.1051/m2an/2009013 %G en %F M2AN_2009__43_5_929_0
Giesselmann, Jan. A convergence result for finite volume schemes on riemannian manifolds. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 929-955. doi : 10.1051/m2an/2009013. http://www.numdam.org/articles/10.1051/m2an/2009013/
[1] Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12 (2005) 291-323. | MR | Zbl
, and ,[2] Well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. H. Poincaré Anal. Non Linéaire 24 (2007) 989-1008. | Numdam | MR | Zbl
and ,[3] Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50 (2008) 723-752. Available at http://www.amath.washington.edu/rjl/pubs/circles. | MR | Zbl
, and ,[4] The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (1996) 1531-1552. | MR | Zbl
and ,[5] A “shallow-water” theory for the sun's active longitudes. Astrophys. J. Lett. 635 (2005) L193-L196.
and ,[6] Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, USA (1992). | MR | Zbl
,[7] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | MR | Zbl
, , and ,[8] Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11 (2008) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2008-7. | Zbl
,[9] Magnetohydrodynamic “shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544 (2000) L79-L82.
,[10] Lagrange-Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136 (1997) 197-213. | MR | Zbl
,[11] High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214 (2006) 447-465. | MR | Zbl
,[12] Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11 (1999) 1272-1274. | Zbl
, and ,[13] Riemannian Geometry and Geometric Analysis. Springer Universitext, Springer (2002). | MR | Zbl
,[14] Spatial discretization of the shallow water equations in spherical geometry using osher's scheme. J. Comput. Phys. 165 (2000) 542-565. | Zbl
, and ,[15] Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6 (2003) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2003-7. | MR | Zbl
and ,[16] Heat semigroup and functions of bounded variation on Riemannian manifolds. J. reine angew. Math. 613 (2007) 99-119. | MR | Zbl
, , and ,[17] A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorolog. Soc. 122 (1996) 959-982.
, and ,[18] The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124 (1996) 93-114. | MR | Zbl
, and ,[19] A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213 (2006) 629-658. | MR | Zbl
,[20] A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199 (2004) 631-662. | MR | Zbl
, and ,[21] “Shallow-water”“Shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551 (2001) L185-L188.
, and ,[22] Observation of diffraction-free propagation of surface acoustic waves around a homogeneous isotropic solid sphere. Appl. Phys. Lett. 77 (2000) 2926-2928.
, , and ,Cité par Sources :