The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic displacement at the rate O() in the discrete and norms where is the interatomic spacing. We also give a proof that the error in the displacement gradient decays away from the interface to O() at distance O() in the atomistic region and distance O() in the continuum region. Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum coupling error in terms of a general underlying interatomic potential and gives the estimates described above in the discrete and norms.
Mots clés : quasicontinuum, atomistic to continuum, ghost force
@article{M2AN_2009__43_3_591_0, author = {Dobson, Matthew and Luskin, Mitchell}, title = {An analysis of the effect of ghost force oscillation on quasicontinuum error}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {591--604}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/m2an/2009007}, mrnumber = {2536250}, zbl = {1165.81414}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2009007/} }
TY - JOUR AU - Dobson, Matthew AU - Luskin, Mitchell TI - An analysis of the effect of ghost force oscillation on quasicontinuum error JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 591 EP - 604 VL - 43 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2009007/ DO - 10.1051/m2an/2009007 LA - en ID - M2AN_2009__43_3_591_0 ER -
%0 Journal Article %A Dobson, Matthew %A Luskin, Mitchell %T An analysis of the effect of ghost force oscillation on quasicontinuum error %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 591-604 %V 43 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2009007/ %R 10.1051/m2an/2009007 %G en %F M2AN_2009__43_3_591_0
Dobson, Matthew; Luskin, Mitchell. An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 591-604. doi : 10.1051/m2an/2009007. http://www.numdam.org/articles/10.1051/m2an/2009007/
[1] Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation. Int. J. Mult. Comp. Eng. 5 (2007) 407-415.
and ,[2] Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model. Multiscale Model. Simul. 7 (2008) 147-170. | MR | Zbl
and ,[3] Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model. Comp. Meth. App. Mech. Eng. 197 (2008) 4298-4306. | MR
and ,[4] On atomistic-to-continuum (AtC) coupling by blending. Multiscale Model. Simul. 7 (2008) 381-406. | MR | Zbl
, , , and ,[5] Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797-826. | Numdam | MR
, and ,[6] Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sc. 11 (2003) R33-R68.
and ,[7] Analysis of a force-based quasicontinuum method. ESAIM: M2AN 42 (2008) 113-139. | Numdam | MR | Zbl
and ,[8] Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific (2005) 18-32. | MR
and .[9] Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115.
, and ,[10] An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899-1923. | Zbl
and ,[11] Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657-675 (electronic). | MR | Zbl
,[12] Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313-332. | MR
,[13] The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203-239.
and ,[14] A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271-284.
, and .[15] Analysis of a one-dimensional nonlocal quasicontinuum method. Preprint. | Zbl
and ,[16] Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359-2389. | MR | Zbl
, , and ,[17] A-posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Research Report NA-06/13, Oxford University Computing Laboratory (2006).
and ,[18] Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57-91. | Numdam | MR | Zbl
and ,[19] Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362-380. | MR | Zbl
, and ,[20] Error control for molecular statics problems. Int. J. Mult. Comp. Eng. 4 (2006) 647-662.
, and ,[21] Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704-1707.
and ,[22] An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611-642. | MR | Zbl
, , , , and ,[23] Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104.
, , and ,[24] Analysis of the Finite Elements Method. Prentice Hall (1973). | MR | Zbl
and ,[25] Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529-1563.
, and ,Cité par Sources :