An analysis of the effect of ghost force oscillation on quasicontinuum error
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 591-604.

The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic displacement at the rate O(h) in the discrete and w 1,1 norms where h is the interatomic spacing. We also give a proof that the error in the displacement gradient decays away from the interface to O(h) at distance O(h|logh|) in the atomistic region and distance O(h) in the continuum region. Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum coupling error in terms of a general underlying interatomic potential and gives the estimates described above in the discrete and w 1,p norms.

DOI : 10.1051/m2an/2009007
Classification : 65Z05, 70C20
Mots-clés : quasicontinuum, atomistic to continuum, ghost force
@article{M2AN_2009__43_3_591_0,
     author = {Dobson, Matthew and Luskin, Mitchell},
     title = {An analysis of the effect of ghost force oscillation on quasicontinuum error},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {591--604},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {3},
     year = {2009},
     doi = {10.1051/m2an/2009007},
     mrnumber = {2536250},
     zbl = {1165.81414},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009007/}
}
TY  - JOUR
AU  - Dobson, Matthew
AU  - Luskin, Mitchell
TI  - An analysis of the effect of ghost force oscillation on quasicontinuum error
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 591
EP  - 604
VL  - 43
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009007/
DO  - 10.1051/m2an/2009007
LA  - en
ID  - M2AN_2009__43_3_591_0
ER  - 
%0 Journal Article
%A Dobson, Matthew
%A Luskin, Mitchell
%T An analysis of the effect of ghost force oscillation on quasicontinuum error
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 591-604
%V 43
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009007/
%R 10.1051/m2an/2009007
%G en
%F M2AN_2009__43_3_591_0
Dobson, Matthew; Luskin, Mitchell. An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 591-604. doi : 10.1051/m2an/2009007. http://www.numdam.org/articles/10.1051/m2an/2009007/

[1] M. Arndt and M. Luskin, Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation. Int. J. Mult. Comp. Eng. 5 (2007) 407-415.

[2] M. Arndt and M. Luskin, Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model. Multiscale Model. Simul. 7 (2008) 147-170. | MR | Zbl

[3] M. Arndt and M. Luskin, Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model. Comp. Meth. App. Mech. Eng. 197 (2008) 4298-4306. | MR

[4] S. Badia, M.L. Parks, P.B. Bochev, M. Gunzburger and R.B. Lehoucq, On atomistic-to-continuum (AtC) coupling by blending. Multiscale Model. Simul. 7 (2008) 381-406. | MR | Zbl

[5] X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797-826. | Numdam | MR

[6] W. Curtin and R. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sc. 11 (2003) R33-R68.

[7] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum method. ESAIM: M2AN 42 (2008) 113-139. | Numdam | MR | Zbl

[8] W. E and P. Ming. Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific (2005) 18-32. | MR

[9] W. E, J. Lu and J. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115.

[10] J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899-1923. | Zbl

[11] P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657-675 (electronic). | MR | Zbl

[12] P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313-332. | MR

[13] R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203-239.

[14] R. Miller, L. Shilkrot and W. Curtin. A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271-284.

[15] P. Ming and J.Z. Yang, Analysis of a one-dimensional nonlocal quasicontinuum method. Preprint. | Zbl

[16] J.T. Oden, S. Prudhomme, A. Romkes and P. Bauman, Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359-2389. | MR | Zbl

[17] C. Ortner and E. Süli, A-posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Research Report NA-06/13, Oxford University Computing Laboratory (2006).

[18] C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57-91. | Numdam | MR | Zbl

[19] M.L. Parks, P.B. Bochev and R.B. Lehoucq, Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362-380. | MR | Zbl

[20] S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Mult. Comp. Eng. 4 (2006) 647-662.

[21] D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704-1707.

[22] V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611-642. | MR | Zbl

[23] T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104.

[24] G. Strang and G. Fix, Analysis of the Finite Elements Method. Prentice Hall (1973). | MR | Zbl

[25] E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529-1563.

Cité par Sources :