We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133-142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.
Mots clés : fluid/particle systems, fluid/solid interaction, lubrication force, contacts, Stokes fluid
@article{M2AN_2009__43_1_53_0, author = {Lefebvre, Aline}, title = {Numerical simulation of gluey particles}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {53--80}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an/2008042}, mrnumber = {2494794}, zbl = {1163.76056}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2008042/} }
TY - JOUR AU - Lefebvre, Aline TI - Numerical simulation of gluey particles JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 53 EP - 80 VL - 43 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2008042/ DO - 10.1051/m2an/2008042 LA - en ID - M2AN_2009__43_1_53_0 ER -
Lefebvre, Aline. Numerical simulation of gluey particles. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 53-80. doi : 10.1051/m2an/2008042. http://www.numdam.org/articles/10.1051/m2an/2008042/
[1] Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187-218. | MR | Zbl
, and ,[2] Mesure par interférométrie laser du mouvement d'une particule proche d'une paroi. J. Phys. III 1 (1991) 315-330.
, , and ,[3] Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079-3092.
and ,[4] Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111-157.
and ,[5] High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2.
and ,[6] The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343-371. | Zbl
,[7] The slow motion of a sphere through a viscous fluid towards a plane surface - II - Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753-1777.
and ,[8] Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212-238. | MR | Zbl
and ,[9] Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59-71. | MR | Zbl
and ,[10] A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289-306. | JFM
,[11] Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591-592. | JFM
,[12] On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419-441. | MR | Zbl
,[13] A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755-794. | Zbl
, , and ,[14] Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345-1371. | MR | Zbl
,[15] Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335-352. | Zbl
,[16] Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351-373. | MR | Zbl
and ,[17] CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l'analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004).
, and ,[18] Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3-12.
, , , , and ,[19] Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247-264. | Zbl
, , , and ,[20] Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120-132. | MR | Zbl
,[21] Simulation numérique d'écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007).
,[22] A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053-1058. | MR | Zbl
,[23] Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325-351. | MR | Zbl
,[24] A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649-679. | MR | Zbl
,[25] A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133-142. | MR | Zbl
,[26] Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388-397. | Zbl
, and ,[27] A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509-1524. | Zbl
, , , and ,[28] A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327-336. | Zbl
,[29] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113-147. | MR | Zbl
, and ,[30] Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495-509. | Zbl
, and ,[31] Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52.
and ,[32] Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3-39. | MR | Zbl
,[33] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499-1532. | MR | Zbl
,[34] Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453-458. | MR | Zbl
,[35] A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319-326. | Zbl
,[36] Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R).
and ,[37] Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531-566. | MR | Zbl
and ,Cité par Sources :