This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of . This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.
Mots-clés : Cheeger sets, Cheeger constant, total variation minimization, projections
@article{M2AN_2009__43_1_139_0, author = {Carlier, Guillaume and Comte, Myriam and Peyr\'e, Gabriel}, title = {Approximation of maximal {Cheeger} sets by projection}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {139--150}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an/2008040}, mrnumber = {2494797}, zbl = {1161.65046}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2008040/} }
TY - JOUR AU - Carlier, Guillaume AU - Comte, Myriam AU - Peyré, Gabriel TI - Approximation of maximal Cheeger sets by projection JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 139 EP - 150 VL - 43 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2008040/ DO - 10.1051/m2an/2008040 LA - en ID - M2AN_2009__43_1_139_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Comte, Myriam %A Peyré, Gabriel %T Approximation of maximal Cheeger sets by projection %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 139-150 %V 43 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2008040/ %R 10.1051/m2an/2008040 %G en %F M2AN_2009__43_1_139_0
Carlier, Guillaume; Comte, Myriam; Peyré, Gabriel. Approximation of maximal Cheeger sets by projection. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 139-150. doi : 10.1051/m2an/2008040. http://www.numdam.org/articles/10.1051/m2an/2008040/
[1] Uniqueness of the Cheeger set of a convex body. Preprint (2007) available at http://cvgmt.sns.it. | MR | Zbl
and ,[2] Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29-53. | MR | Zbl
, and ,[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl
, and ,[4] Globally minimal surfaces by continuous maximal flows. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 106-118.
and ,[5] Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179 (2006) 109-152. | MR | Zbl
, , and ,[6] On the selection of maximal Cheeger sets. Differential Integral Equations 20 (2007) 991-1004. | MR
, and ,[7] On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214-226. | MR | Zbl
and ,[8] Uniqueness of the Cheeger set of a convex body. Pacific J. Math. 232 (2007) 77-90. | MR
, and ,[9] An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis. J. Math. Imaging Vision 20 (2004) 89-97. | MR
,[10] Image recovery via total variation minimization. Numer. Math. 76 (1997) 167-188. | MR | Zbl
and ,[11] A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Signal Process. 51 (2003) 1771-1782. | MR
,[12] image restoration subject to a total variation constraint. IEEE Trans. Image Process. 13 (2004) 1213-1222.
and ,[13] A model of stability of slopes in Slope Stability 2000, in Proceedings of Sessions of Geo-Denver 2000, D.V. Griffiths, G.A. Fenton, T.R. Martin Eds., Geotechnical special publication 101 (2000) 86-98.
,[14] Théorèmes d’existence pour des équations avec l’opérateur “1-Laplacien”, première valeur propre de . C. R. Math. Acad. Sci. Paris 334 (2002) 1071-1076. | MR | Zbl
,[15] Some existence's results for noncoercive “1-Laplacian” operator. Asymptotic Anal. 43 (2005) 287-322. | MR | Zbl
,[16] Les inéquations en mécanique et en physique. Dunod, Paris (1972). | MR | Zbl
and ,[17] Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR | Zbl
and ,[18] Measure Theory and Fine Properties of Functions. CRC Press (1992). | MR | Zbl
and ,[19] Shape optimization and supremal minimization approaches in landslides modeling. Appl. Math. Opt. 52 (2005) 349-364. | MR | Zbl
, and ,[20] The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013-1026. | EuDML | Numdam | MR | Zbl
, , and ,[21] Generalized Cheeger sets related to landslides. Calc. Var. Partial Differential Equations 23 (2005) 227-249. | MR | Zbl
and ,[22] Max-flow min-cut theorem in an anisotropic network. Osaka J. Math. 27 (1990) 805-842. | MR | Zbl
,[23] Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259-268. | Zbl
, and ,[24] Maximal flow through a domain. Math. Programming 26 (1983) 123-143. | MR | Zbl
,[25] Maximum flows and minimum cuts in the plane. J. Global Optimization (to appear). | MR | Zbl
,Cité par Sources :