We tackle the problem of studying which kind of functions can occur as complexity functions of formal languages of a certain type. We prove that an important narrow subclass of rational languages contains languages of polynomial complexity of any integer degree over any non-trivial alphabet.
Mots-clés : regular language, finite antidictionary, combinatorial complexity, wed-like automaton
@article{ITA_2009__43_2_269_0, author = {Shur, Arseny M.}, title = {Polynomial languages with finite antidictionaries}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {269--279}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/ita:2008028}, mrnumber = {2512259}, zbl = {1166.68026}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2008028/} }
TY - JOUR AU - Shur, Arseny M. TI - Polynomial languages with finite antidictionaries JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 269 EP - 279 VL - 43 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2008028/ DO - 10.1051/ita:2008028 LA - en ID - ITA_2009__43_2_269_0 ER -
%0 Journal Article %A Shur, Arseny M. %T Polynomial languages with finite antidictionaries %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 269-279 %V 43 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2008028/ %R 10.1051/ita:2008028 %G en %F ITA_2009__43_2_269_0
Shur, Arseny M. Polynomial languages with finite antidictionaries. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 269-279. doi : 10.1051/ita:2008028. http://www.numdam.org/articles/10.1051/ita:2008028/
[1] Uniformly growing -th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | MR | Zbl
,[2] Combinatorics of words, in Handbook of formal languages, Vol. 1, Chap. 6, edited by G. Rosenberg, A. Salomaa. Springer, Berlin (1997), 329-438. | MR
and ,[3] Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111-117. | MR
, and ,[4] On subword complexities of homomorphic images of languages. RAIRO-Theor. Inf. Appl. 16 (1982) 303-316. | EuDML | Numdam | MR | Zbl
and ,[5] Repetition-free words. Theoret. Comput. Sci. 44 (1986) 175-197. | MR | Zbl
,[6] Combinatorial complexity of rational languages. Discr. Anal. Oper. Res., Ser. 1 12 (2005) 78-99 (in Russian). | MR | Zbl
,Cité par Sources :