We introduce natural generalizations of two well-known dynamical systems, the Sand Piles Model and the Brylawski's model. We describe their order structure, their reachable configuration's characterization, their fixed points and their maximal and minimal length's chains. Finally, we present an induced model generating the set of unimodal sequences which amongst other corollaries, implies that this set is equipped with a lattice structure.
Mots-clés : discrete dynamical system, sand piles model, partition, unimodal sequence, order, lattice, dominance ordering, fixed point
@article{ITA_2008__42_3_631_0, author = {Thi Ha Duong Phan}, title = {Two sided sand piles model and unimodal sequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {631--646}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008019}, mrnumber = {2434039}, zbl = {1149.68408}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2008019/} }
TY - JOUR AU - Thi Ha Duong Phan TI - Two sided sand piles model and unimodal sequences JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 631 EP - 646 VL - 42 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2008019/ DO - 10.1051/ita:2008019 LA - en ID - ITA_2008__42_3_631_0 ER -
%0 Journal Article %A Thi Ha Duong Phan %T Two sided sand piles model and unimodal sequences %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 631-646 %V 42 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2008019/ %R 10.1051/ita:2008019 %G en %F ITA_2008__42_3_631_0
Thi Ha Duong Phan. Two sided sand piles model and unimodal sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 631-646. doi : 10.1051/ita:2008019. http://www.numdam.org/articles/10.1051/ita:2008019/
[1] Disks, ball, and walls: analysis of a combinatorial game. Amer. Math. Monthly 96 (1989) 481-493. | MR | Zbl
, , , , , and .[2] Self-organized criticality. Phys. Rev. A 38 (1988) 364-374. | MR
, , and .[3] Paralel chip firing games on graphs. Theoret. Comput. Sci. 92 (1992) 291-300. | MR | Zbl
and .[4] Chip-firing games on graphes. Eur .J. Combin. 12 (1991) 283-291. | MR | Zbl
, , and .[5] Introduction to greedoids. Matroid applications, N. White, Ed. Cambridge University Press (1991) 284-357. | MR | Zbl
and .[6] Log-concave and unimodal sequences in algebra, combinatorics and geometry: an update. Contemporary Mathematics 178 (1994) 71-84. | MR | Zbl
.[7] The lattice of interger partitions. Discrete Mathematics 6 (1973) 201-219. | MR | Zbl
.[8] Introduction to Lattices and Order. Cambridge University Press (1990). | MR | Zbl
and .[9] Bidimensional sand pile and ice pile models. PUMA 17 (2006) 71-96. | MR
, , , and .[10] Advances in symmetric sandpiles. Fundamenta Informaticae 20 (2006) 1-22. | MR | Zbl
, , and .[11] Games on line graphes and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | MR | Zbl
and .[12] Lattice structure and convergence of a game of cards. Ann. Combin. 6 (2002) 327-335. | MR | Zbl
, , and .[13] Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51-64. | MR | Zbl
, , and .[14] Longest chains in the lattice of integer partitions ordered by majorization. Eur. J. Combin. 7 (1986) 1-10. | MR | Zbl
and .[15] Structure of some sand piles model. Theoret. Comput. Sci, 262 (2001) 525-556. | MR | Zbl
, , , and .[16] The lattice of integer partitions and its infinite extension. To appear in Discrete Mathematics (2008).
and .[17] PhD thesis. Université Paris VII (1999).
.[18] Balancing vectors in the max norm. Combinatorica 6 (1986) 55-65. | MR | Zbl
.[19] Log-cocave and unimodal sequences in algebra, combinatorics and geometry. Graph theory and its applications: East and West (Jinan 1986). Ann. New York Acad. Sci. 576 (1989). | MR | Zbl
.Cité par Sources :