We investigate automatic presentations of -words. Starting points of our study are the works of Rigo and Maes, Caucal, and Carton and Thomas concerning lexicographic presentation, MSO-interpretability in algebraic trees, and the decidability of the MSO theory of morphic words. Refining their techniques we observe that the lexicographic presentation of a (morphic) word is in a certain sense canonical. We then generalize our techniques to a hierarchy of classes of -words enjoying the above mentioned definability and decidability properties. We introduce -lexicographic presentations, and morphisms of level stacks and show that these are inter-translatable, thus giving rise to the same classes of -lexicographic or level morphic words. We prove that these presentations are also canonical, which implies decidability of the MSO theory of every -lexicographic word as well as closure of these classes under MSO-definable recolorings, e.g. closure under deterministic sequential mappings. The classes of -lexicographic words are shown to constitute an infinite hierarchy.
Mots-clés : morphic words, monadic second-order logic, automatic structures, automatic sequences
@article{ITA_2008__42_3_417_0, author = {B\'ar\'any, Vince}, title = {A hierarchy of automatic $\omega $-words having a decidable {MSO} theory}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {417--450}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008008}, mrnumber = {2434027}, zbl = {1152.03030}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2008008/} }
TY - JOUR AU - Bárány, Vince TI - A hierarchy of automatic $\omega $-words having a decidable MSO theory JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 417 EP - 450 VL - 42 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2008008/ DO - 10.1051/ita:2008008 LA - en ID - ITA_2008__42_3_417_0 ER -
%0 Journal Article %A Bárány, Vince %T A hierarchy of automatic $\omega $-words having a decidable MSO theory %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 417-450 %V 42 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2008008/ %R 10.1051/ita:2008008 %G en %F ITA_2008__42_3_417_0
Bárány, Vince. A hierarchy of automatic $\omega $-words having a decidable MSO theory. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 417-450. doi : 10.1051/ita:2008008. http://www.numdam.org/articles/10.1051/ita:2008008/
[1] Automatic Sequences, Theory, Applications, Generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[2] Iterated GSMs and Co-CFL. Acta Informatica 26, 749-769 (1989). | MR | Zbl
and ,[3] Invariants of automatic presentations and semi-synchronous transductions. In STACS '06. Lect. Notes Comput. Sci. 3884, 289 (2006). | MR | Zbl
,[4] Automatic Presentations of Infinite Structures. Ph.D. thesis, RWTH Aachen (2007).
,[5] Transductions and Context-Free Languages. Teubner, Stuttgart (1979). | MR | Zbl
,[6] The monadic theory of tree-like structures. In Automata, Logics, and Infinite Games. Lect. Notes Comput. Sci. 2500, 285-301 (2002). | MR | Zbl
and ,[7] Undecidable extensions of Büchi arithmetic and Cobham-Semënov theorem. Journal of Symbolic Logic 62, 1280-1296 (1997). | MR | Zbl
,[8] Automatic Structures. Diploma thesis, RWTH-Aachen (1999).
,[9] Axiomatising Tree-interpretable Structures. In STACS. Lect. Notes Comput. Sci. 2285, 596-607 (2002). | MR | Zbl
,[10] Finite presentations of infinite structures: Automata and interpretations. Theor. Comput. Syst. 37, 641-674 (2004). | MR | Zbl
and ,[11] Higher-order schemes and morphic words. Journées Montoises, Rennes (2006).
,[12] Bertrand numeration systems and recognizability. Theoretical Computer Science 181, 17-43 (1997). | MR | Zbl
and ,[13] Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin 1, 191-238 (1994). | MR | Zbl
, , and ,[14] Word processing in groups. Jones and Barlett Publ., Boston, MA (1992). | MR | Zbl
, , , , and ,[15] Context-sensitive languages, rational graphs and determinism (2005). | MR | Zbl
and ,[16] The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In FSTTCS. Lect. Notes Comput. Sci. 2914, 112-123 (2003). | MR
and ,[17] The monadic theory of morphic infinite words and generalizations. Information and Computation 176, 51-65 (2002). | MR | Zbl
and ,[18] Monadic theory of term rewritings. In LICS, pp. 266-273. IEEE Computer Society (1992).
,[19] On infinite transition graphs having a decidable monadic theory. In ICALP'96. Lect. Notes Comput. Sci. 1099, 194-205 (1996). | MR | Zbl
,[20] On infinite terms having a decidable monadic theory. In MFCS, pp. 165-176 (2002). | MR | Zbl
,[21] A combinatorial theorem for trees. In ICALP'07. Lect. Notes Comput. Sci. 4596, 901-912 (2007). | MR
,[22] On factorisation forests and some applications. arXiv:cs.LO/0701113v1 (2007).
,[23] The monadic second-order logic of graphs ix: Machines and their behaviours. Theoretical Computer Science 151, 125-162 (1995). | MR | Zbl
,[24] Monadic second-order logic, graph coverings and unfoldings of transition systems. Annals of Pure and Applied Logic 92, 35-62 (1998). | MR | Zbl
and ,[25] Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. Journal of Symbolic Logic 31, 169-181 (1966). | Zbl
and ,[26] Iterated pushdown automata and sequences of rational numbers. Annals of Pure and Applied Logic 141, 363-411, (2006). | MR | Zbl
and ,[27] Synchronized rational relations of finite and infinite words. Theoretical Computer Science 108, 45-82 (1993). | MR | Zbl
and ,[28] E. Grädel, W. Thomas and T. Wilke, Eds. Automata, Logics, and Infinite Games. Lect. Notes Comput. Sci. 2500, (2002). | Zbl
[29] Décidabilité par automate fini. Ann. Sci. Math. Québec 7, 39-57 (1983). | MR | Zbl
,[30] A note on decidability questions related to abstract numeration systems. Discrete Math. 285, 329-333 (2004). | MR | Zbl
and ,[31] Iterative devices generating infinite words. In STACS '92. Lect. Notes Comput. Sci. 577, 529-543 (1992).
and ,[32] L systems. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa Eds., volume I, pp. 253-328. Springer, New York (1997). | MR | Zbl
, and ,[33] Automatic presentations of structures. In LCC '94. Lect. Notes Comput. Sci. 960, 367-392 (1995). | MR
and ,[34] Automatic structures: Overview and future directions. J. Autom. Lang. Comb. 8, 287-301 (2003). | MR | Zbl
and ,[35] Definability and regularity in automatic structures. In STACS '04. Lect. Notes Comput. Sci. 2996, 440-451 (2004). | MR | Zbl
, and ,[36] Prédicats algébriques d'entiers. Rapport de stage, IRISA: Galion (2005).
,[37] Automatic Graph and D0L-Sequences of Finite Graphs. Journal of Computer and System Sciences 67, 497-545 (2003). | MR | Zbl
,[38] An automata theoretic decidability proof for first-order theory of with morphic predicate . J. Autom. Lang. Comb. 4, 229-245 (1999). | MR | Zbl
,[39] Families of automata characterizing context-sensitive languages. Acta Informatica 41, 293-314 (2005). | MR | Zbl
and ,[40] The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51-75 (1985). | MR | Zbl
and ,[41] On various classes of infinite words obtained by iterated mappings. In Automata on Infinite Words, pp. 188-197 (1984). | MR | Zbl
,[42] A topological approach to transductions. Theoretical Computer Science 340, 443-456 (2005). | MR | Zbl
and ,[43] On decidability of monadic logic of order over the naturals extended by monadic predicates. Unpublished note (2005).
,[44] Decidable theories of the ordering of natural numbers with unary predicates. In CSL 2006. Lect. Notes Comput. Sci. 4207, 562-574 (2006). | MR
and ,[45] More on generalized automatic sequences. J. Autom. Lang. Comb. 7, 351-376 (2002). | MR | Zbl
and ,[46] The synchronized graphs trace the context-sensistive languages. Elect. Notes Theoret. Comput. Sci. 68 (2002).
,[47] The Book of L. Springer Verlag (1986). | Zbl
and ,[48] Automatic Structures. Ph.D. thesis, University of Auckland, NZ (2004).
,[49] Automata presenting structures: A survey of the finite-string case. Manuscript.
,[50] Sequences of level 1, 2, 3,..., k,... In CSR'07. Lect. Notes Comput. Sci. 4649, 24-32 (2007).
,[51] The monadic theory of order. Annals of Mathematics 102, 379-419 (1975). | MR | Zbl
,[52] Rich omega-words and monadic second-order arithmetic. In CSL, pp. 478-490 (1997). | MR | Zbl
,[53] Languages, automata, and logic. In Handbook of Formal Languages, G. Rozenberg and A. Salomaa, Eds., Vol. III, pp. 389-455. Springer, New York (1997). | MR
,[54] Constructing infinite graphs with a decidable mso-theory. In MFCS'03. Lect. Notes Comput. Sci. 2747, 113-124 (2003). | MR | Zbl
,[55] Monadic second-order logic on tree-like structures. Theoretical Computer Science 275, 311-346 (2002). | MR | Zbl
,Cité par Sources :