@article{ITA_2008__42_1_1_0, author = {Choffrut, Christian and Colson, Lo{\"\i}c}, title = {Preface}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {1--4}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/ita:2007056}, mrnumber = {2382540}, zbl = {1149.01307}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2007056/} }
TY - JOUR AU - Choffrut, Christian AU - Colson, Loïc TI - Preface JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 1 EP - 4 VL - 42 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2007056/ DO - 10.1051/ita:2007056 LA - en ID - ITA_2008__42_1_1_0 ER -
%0 Journal Article %A Choffrut, Christian %A Colson, Loïc %T Preface %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 1-4 %V 42 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2007056/ %R 10.1051/ita:2007056 %G en %F ITA_2008__42_1_1_0
Choffrut, Christian; Colson, Loïc. Preface. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 1-4. doi : 10.1051/ita:2007056. http://www.numdam.org/articles/10.1051/ita:2007056/
[1] Random reals “à la Chaitin” with no prefix-freeness (with V. Becher), submitted.
[2] From index sets to randomness in (Random reals and possibly infinite computations - Part II) (with V. Becher), submitted.
[3] Random reals and halting probabilities (with V. Becher, S. Figueira and J.S. Miller). | Zbl
[4] Random reals and possibly infinite computations - Part I: randomness in ’ (with V. Becher). J. Symbolic Logic 70 (2005) 891-913. | MR | Zbl
[5] Is randomness native to computer science? (with M. Ferbus), Curr. Trends Theor. Comput. Sci. 2 (2004) 141-179. Preliminary version in Bull. EATCS 74 (2001) 78-118. | MR | Zbl
[6] Kolmogorov complexities Kmin, Kmax on computable partially ordered sets (with M. Ferbus). Theor. Comput. Sci. 352 (2006) 159-180. | MR | Zbl
[7] Kolmogorov complexity and set theoretical representations of integers (with M. Ferbus). Math. Logic Quart. 52 (2006) 381-409. | MR | Zbl
[8] Kolmogorov complexity and non determinism (with J.-Y. Marion). Theor. Comput. Sci. 271 (2002) 151-180. | MR | Zbl
[9] Logics for finite words on infinite alphabets (with C. Choffrut), submitted.
[10] Decision problems among the main subfamilies of rational relations (with C. Choffrut and O. Carton). RAIRO-Theor. Inf. Appl. 40 (2006) 255-275. | Numdam | MR | Zbl
[11] Separability of rational relations in by recognizable relations is decidable (with C. Choffrut). Inform. Process. Lett. 99 (2006) 27-32. | MR
[12] Modelization of deterministic rational relations. Theor. Comput. Sci. 281 (2002) 423-453. | MR | Zbl
[13] The theory of rational relations on transfinite strings (with C. Choffrut), in Words, Languages and Combinatorics III (Kyoto, March 2000), World Scientific (2004) 103-151. | MR
[14] Uniformization of rational relations (with C. Choffrut), in Jewels are forever, book in honor of Arto Salomaa, Springer (1999) 59-71. | MR | Zbl
[15] Every recursive linear ordering has an isomorphic copy in DTIME-SPACE 55 (1990) 260-276. | MR | Zbl
[16] Synchronization of a bounded degree graph of cellular automata with non uniform delays in time . Theor. Comput. Sci. 356 (2006) 170-185. | MR
[17] Register cellular automata in the hyperbolic plane (with M. Margenstern). Fund. Inform. 61 (2004) 19-27. | MR | Zbl
[18] Syntactical truth predicates for second order arithmetic (with L. Colson). J. Symbolic Logic 66 (2001) 225-256. | MR | Zbl
[19] La théorie élémentaire de la fonction de couplage de Cantor des entiers naturels est décidable (with P. Cégielski and D. Richard). C. R. Acad. Sci. Sér. 1 331 (2000) 107-110. | MR | Zbl
[20] Décidabilité et complexité des théories logiques. Collection Didactique INRIA 8 (1991) 7-97. | MR
[21] Contribution à l'étude d'une conjecture de théorie des nombres par le codage ZBV (with Denis Richard). Enseign. Math. 35 (1989) 125-189. | MR | Zbl
[22] Recursion and topology on for possibly infinite computations (with V. Becher). Theor. Comput. Sci. 322 (2004) 85-136. | MR | Zbl
[23] Intermediate submodels and generic extensions in set theory. Ann. Math. 101 (1975) 447-490. | MR | Zbl
[24] Modéles intermédiaires et extensions génériques. C. R. Acad. Sci. 276 (1973) 1635-1638. | Zbl
[25] Minimalité des réels définis par forcing sur des familles d'arbres de suites finies d'entiers. C. R. Acad. Sci. 281 (1975) 301-304. | MR | Zbl
[26] Combinatorics on ideals and forcing. Ann Math. Logic 3 (1971) 363-394. | MR | Zbl
[27] Problème de la minimalité des réels définis par forcing à partir d'un ultrafiltre. C. R. Acad. Sci. 270 (1970) 169-172. | MR | Zbl
[28] Détermination des jeux boréliens et problèmes logiques associés. Sém. Bourbaki 478 (1976) 1-14. | Numdam | Zbl
[29] La non-contradiction relative de l'axiome de Martin. Publ. Math. Univ. Paris VII 5 (1979) 61-74. Séminaire GMS (Grigorieff, McAloon, Stern). | MR | Zbl
[30] Le réel . Publ. Math. Univ. Paris VII 5 (1979) 149-162. Séminaire GMS (Grigorieff, McAloon, Stern). | MR | Zbl
[31] et les injections élémentaires de L dans L. Publ. Math. Univ. Paris VII 5 (1979) 163-202. Séminaire GMS (Grigorieff, McAloon, Stern). | MR | Zbl
Cité par Sources :