Learning discrete categorial grammars from structures
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 165-182.

We define the class of discrete classical categorial grammars, similar in the spirit to the notion of reversible class of languages introduced by Angluin and Sakakibara. We show that the class of discrete classical categorial grammars is identifiable from positive structured examples. For this, we provide an original algorithm, which runs in quadratic time in the size of the examples. This work extends the previous results of Kanazawa. Indeed, in our work, several types can be associated to a word and the class is still identifiable in polynomial time. We illustrate the relevance of the class of discrete classical categorial grammars with linguistic examples.

DOI : 10.1051/ita:2007055
Classification : 68Q32, 68T50, 03B47
Mots clés : classical categorial grammar, grammatical inference, gold's identification in the limit, types, positive examples
@article{ITA_2008__42_1_165_0,
     author = {Besombes, J\'er\^ome and Marion, Jean-Yves},
     title = {Learning discrete categorial grammars from structures},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {165--182},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {1},
     year = {2008},
     doi = {10.1051/ita:2007055},
     mrnumber = {2382550},
     zbl = {1148.68027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2007055/}
}
TY  - JOUR
AU  - Besombes, Jérôme
AU  - Marion, Jean-Yves
TI  - Learning discrete categorial grammars from structures
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2008
SP  - 165
EP  - 182
VL  - 42
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2007055/
DO  - 10.1051/ita:2007055
LA  - en
ID  - ITA_2008__42_1_165_0
ER  - 
%0 Journal Article
%A Besombes, Jérôme
%A Marion, Jean-Yves
%T Learning discrete categorial grammars from structures
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2008
%P 165-182
%V 42
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2007055/
%R 10.1051/ita:2007055
%G en
%F ITA_2008__42_1_165_0
Besombes, Jérôme; Marion, Jean-Yves. Learning discrete categorial grammars from structures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 165-182. doi : 10.1051/ita:2007055. http://www.numdam.org/articles/10.1051/ita:2007055/

[1] D. Angluin, Inference of reversible languages. J. ACM 29 (1982) 741-765. | MR | Zbl

[2] Y. Bar-Hillel, C. Gaifman, and E. Shamir, On categorial and phrase structure grammars. Bulletin of Research Council of Israel F(9) (1960) 1-16. | MR | Zbl

[3] R. Bonato and C. Retoré, Learning rigid lambek grammars and minimalist grammars from structured sentences, in Third Learning Language in Logic Workshop (LLL2001) (2001).

[4] W. Buszkowski and G. Penn, Categorial grammars determined from linguistic data by unification. Studia Logica 49 (1990) 431-454. | MR | Zbl

[5] C. Costa Florêncio, Consistent identification in the limit of any of the classes -valued is np-hard, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. (2001) 125-138. | MR | Zbl

[6] D. Dudau-Sofronie, Apprentissage de Grammaires Catégorielles pour simuler l'acquisition du Langage Naturel à l'aide d'informations sémantiques. Ph.D. thesis, Lille I University (2004).

[7] M.E. Gold, Language identification in the limit. Inform. Control 10 (1967) 447-474. | Zbl

[8] M. Kanazawa, Learnable classes of Categorial Grammars. CSLI (1998). | MR | Zbl

[9] Yannick Le Nir, Structures des analyses syntaxiques catégorielles. Application à l'inférence grammaticale. Ph.D. thesis, Rennes 1 University (2003).

[10] M. Moortgat, Categorial type logics, in Handbook of Logic and Language. North-Holland, J. van Benthem and A. ter Meulen edition (1996).

[11] M. Moortgat, Structural equations in language learning, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. 2099 (2001) 1-16. | Zbl

[12] G.V. Morril, Type Logical Grammar: categorial logic of signs. Kluwer (1994). | Zbl

[13] C. Rétoré, The logic of categorial grammars. Technical Report 5703, INRIA (2005). http://www.inria.fr/rrrt/rr-5703.html

[14] Y. Sakakibara, Efficient learning of context free grammars from positive structural examples. Inform. Comput. 97 (1992) 23-60. | MR | Zbl

[15] I. Tellier, Modéliser l'acquisition de la syntaxe du langage naturel via l'hypothése de la primauté du sens. Ph.D. thesis, Lille I University (2005).

[16] H.J. Tiede, Lambek calculus proofs and tree automata. Lect. Notes Comput. Sci. 2014 (2001) 251-265. | MR | Zbl

Cité par Sources :