We consider logics on
Mots-clés : Presburger arithmetic, first order logic, decidability
@article{ITA_2008__42_1_121_0, author = {Choffrut, Christian}, title = {Deciding whether a relation defined in {Presburger} logic can be defined in weaker logics}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {121--135}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/ita:2007047}, mrnumber = {2382547}, zbl = {1158.03007}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2007047/} }
TY - JOUR AU - Choffrut, Christian TI - Deciding whether a relation defined in Presburger logic can be defined in weaker logics JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 121 EP - 135 VL - 42 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007047/ DO - 10.1051/ita:2007047 LA - en ID - ITA_2008__42_1_121_0 ER -
%0 Journal Article %A Choffrut, Christian %T Deciding whether a relation defined in Presburger logic can be defined in weaker logics %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 121-135 %V 42 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2007047/ %R 10.1051/ita:2007047 %G en %F ITA_2008__42_1_121_0
Choffrut, Christian. Deciding whether a relation defined in Presburger logic can be defined in weaker logics. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 121-135. doi : 10.1051/ita:2007047. https://www.numdam.org/articles/10.1051/ita:2007047/
[1] Decision problems for rational relations. RAIRO-Theor. Inf. Appl. 40 (2006) 255-275. | Numdam | MR | Zbl
, and .[2] Timed automata with periodic clock constraints. J. Algebra Lang. Comput. 5 (2000) 371-404. | MR | Zbl
and .[3] Automata, Languages and Machines, volume A. Academic Press (1974). | MR | Zbl
.[4] Rational sets in commutative monoids. J. Algebra 13 (1969) 173-191. | MR | Zbl
and .[5] Bounded regular sets. Proc. Amer. Math. Soc. 17 (1966) 1043-1049. | MR | Zbl
and .[6] Complexity results for first-order theories of temporal constraints. KR (1994) 379-390.
.[7] Monadic second order definable relations on the binary tree. J. Symbolic Logic 52 (1987) 219-226. | MR | Zbl
and .[8] Definable criterion for definability in presburger arithmentic and its application (1991). Preprint in russian. | MR
.
[9] Logically defined subsets of
[10] Varieties of formal languages. Plenum Publishing Co., New-York (1986). (Traduction de Variétés de langages formels.) | MR | Zbl
.[11] Eléments de théorie des automates. Vuibert Informatique (2003).
.[12] Theory of Linear and Integer Programming. John Wiley & sons (1998). | MR | Zbl
.[13] Logical Number Theory I: An Introduction. Springer Verlag (1991). | MR | Zbl
.Cité par Sources :