Let be an infinite fixed point of a binary -uniform morphism , and let be the critical exponent of . We give necessary and sufficient conditions for to be bounded, and an explicit formula to compute it when it is. In particular, we show that is always rational. We also sketch an extension of our method to non-uniform morphisms over general alphabets.
Mots-clés : critical exponent, binary $k$-uniform morphism
@article{ITA_2009__43_1_41_0, author = {Krieger, Dalia}, title = {On critical exponents in fixed points of $k$-uniform binary morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {41--68}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/ita:2007042}, mrnumber = {2483444}, zbl = {1170.68034}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2007042/} }
TY - JOUR AU - Krieger, Dalia TI - On critical exponents in fixed points of $k$-uniform binary morphisms JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 41 EP - 68 VL - 43 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2007042/ DO - 10.1051/ita:2007042 LA - en ID - ITA_2009__43_1_41_0 ER -
%0 Journal Article %A Krieger, Dalia %T On critical exponents in fixed points of $k$-uniform binary morphisms %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 41-68 %V 43 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2007042/ %R 10.1051/ita:2007042 %G en %F ITA_2009__43_1_41_0
Krieger, Dalia. On critical exponents in fixed points of $k$-uniform binary morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 1, pp. 41-68. doi : 10.1051/ita:2007042. http://www.numdam.org/articles/10.1051/ita:2007042/
[1] Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR | Zbl
and ,[2] Axel Thue's Papers on Repetitions in Words: A Translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
,[3] On the Index of Sturmian Words, in Jewels are forever. Springer, Berlin (1999) 287-294. | MR | Zbl
,[4] Some properties of the factors of Sturmian sequences. Theoret. Comput. Sci. 304 (2003) 365-385. | MR | Zbl
and ,[5] Special factors, periodicity, and an application to Sturmian words. Acta Informatica 36 (2000) 983-1006. | MR | Zbl
and ,[6] An algorithm to test if a given circular HD0L-language avoids a pattern, in IFIP World Computer Congress'94 1 (1994) 459-464. | MR
,[7] The index of Sturmian sequences. Eur. J. Combin. 23 (2002) 23-29. | MR | Zbl
and ,[8] Repetition of subwords in D0L languages. Inform. Control 59 (1983) 13-35. | MR | Zbl
and ,[9] Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR | Zbl
and ,[10] On uniform DOL words. STACS'98 1373 (1998) 544-554. | MR
,[11] Fractional powers in Sturmian words. Theoret. Comput. Sci. 255 (2001) 363-376. | MR | Zbl
and ,[12] On combinatorial properties of the Arshon sequence. Discrete Appl. Math. 114 (2001) 155-169. | MR | Zbl
and ,[13] Repetitiveness of languages generated by morphisms. Theoret. Comput. Sci. 240 (2000) 337-378. | MR | Zbl
and ,[14] On critical exponents in fixed points of binary k-uniform morphisms, in STACS 2006: 23rd Annual Symposium on Theoretical Aspects of Computer Science, edited by B. Durand and W. Thomas. Lect. Notes. Comput. Sci. 3884 (2006) 104-114. | MR | Zbl
,[15] On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | MR | Zbl
,[16] Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press (2002). | MR | Zbl
,[17] The equation in a free group. Michigan Math. J. 9 (1962) 289-298. | MR | Zbl
and ,[18] Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989) 221-242. | MR | Zbl
,[19] Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | EuDML | Numdam | MR | Zbl
and ,[20] If a D0L language is -power free then it is circular. ICALP'93. Lect. Notes Comput. Sci. 700 (1993) 507-518. | MR
and ,[21] Puissances de mots et reconnaissabilité des points fixes d'une substitution. Theoret. Comput. Sci. 99 (1992) 327-334. | MR | Zbl
,[22] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. | JFM
,[23] Sturmian Words and Words with Critical Exponent. Theoret. Comput. Sci. 242 (2000) 283-300. | MR | Zbl
,Cité par Sources :