sturmian words are infinite words that have exactly factors of length for every positive integer . A sturmian word is also defined as a coding over a two-letter alphabet of the orbit of point under the action of the irrational rotation (mod 1). A substitution fixes a sturmian word if and only if it is invertible. The main object of the present paper is to investigate Rauzy fractals associated with two-letter invertible substitutions. As an application, we give an alternative geometric proof of Yasutomi’s characterization of all pairs such that is a fixed point of some non-trivial substitution.
Mots-clés : sturmian words, Rauzy fractals, invertible substitutions, automorphisms of the free monoid, tilings
@article{ITA_2007__41_3_329_0, author = {Berth\'e, Val\'erie and Ei, Hiromi and Ito, Shunji and Rao, Hui}, title = {On substitution invariant sturmian words : an application of {Rauzy} fractals}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {329--349}, publisher = {EDP-Sciences}, volume = {41}, number = {3}, year = {2007}, doi = {10.1051/ita:2007026}, mrnumber = {2354361}, zbl = {1140.11014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2007026/} }
TY - JOUR AU - Berthé, Valérie AU - Ei, Hiromi AU - Ito, Shunji AU - Rao, Hui TI - On substitution invariant sturmian words : an application of Rauzy fractals JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 329 EP - 349 VL - 41 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2007026/ DO - 10.1051/ita:2007026 LA - en ID - ITA_2007__41_3_329_0 ER -
%0 Journal Article %A Berthé, Valérie %A Ei, Hiromi %A Ito, Shunji %A Rao, Hui %T On substitution invariant sturmian words : an application of Rauzy fractals %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 329-349 %V 41 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2007026/ %R 10.1051/ita:2007026 %G en %F ITA_2007__41_3_329_0
Berthé, Valérie; Ei, Hiromi; Ito, Shunji; Rao, Hui. On substitution invariant sturmian words : an application of Rauzy fractals. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 3, pp. 329-349. doi : 10.1051/ita:2007026. http://www.numdam.org/articles/10.1051/ita:2007026/
[1] Connectedness of number theoretic tilings. Arch. Math. (Basel) 82 (2004) 153-163. | Zbl
, and ,[2] Une caractérisation simple des nombres de Sturm. J. Théor. Nombres Bordeaux 10 (1998) 237-241. | Numdam | Zbl
,[3] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | Zbl
, and ,[4] Complete characterization of substitution invariant Sturmian sequences. Integers: electronic journal of combinatorial number theory 5 (2005) A14. | MR | Zbl
, , and ,[5] Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002) 619-626. | Numdam | Zbl
, and ,[6] Sturmian Words: description and orbits. Preprint.
, , and ,[7] A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255-263. | Numdam | Zbl
, and ,[8] Morphismes de Sturm. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 175-189. | Zbl
, and ,[9] Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53. | Zbl
, and ,[10] Initial powers of Sturmian words. Acta Arith. 122 (2006) 315-347. | Zbl
, , and ,[11] Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull. 36 (1993) 15-21. | Zbl
,[12] Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | Zbl
,[13] Sequences with minimal block growth. Math. Syst. Theory 7 (1973) 138-153. | Zbl
, and ,[14] Substitution invariant cutting sequence. J. Théor. Nombres Bordeaux 5 (1993) 123-137. | Numdam | Zbl
, , , and ,[15] Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | Zbl
, and ,[16] A little more about morphic Sturmian words. RAIRO-Theor. Inf. Appl. 40 (2006), 511-518. | Numdam | Zbl
,[17] Techniques in Fractal Geometry. Oxford University Press, 5th edition (1979).
,[18] Purely periodic -expansions with Pisot unit base. Proc. Amer. Math. Soc. 133 (2005) 953-964. | Zbl
, and ,[19] Atomic surfaces, tilings and coincidence I. Irreducible case. Israel J. Math. 153 (2006) 129-156.
, and ,[20] On periodic -expansions of Pisot numbers and Rauzy fractals. Osaka J. Math. 38 (2001) 349-368. | Zbl
, and ,[21] On continued fractions, substitutions and characteristic sequences . Japan J. Math. 16 (1990) 287-306. | Zbl
, and ,[22] Substitution invariant Beatty sequences. Japan J. Math., New Ser. 22 (1996) 349-354. | Zbl
, and ,[23] Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl
,[24] Morphismes sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux 5 (1993) 221-233. | Numdam | Zbl
, and ,[25] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
, and ,[26] Propriétés d'invariance des mots sturmiens. J. Théor. Nombres Bordeaux 9 (1997) 351-369. | Numdam | Zbl
,[27] Substitution invariant Sturmian bisequences. J. Théor. Nombres Bordeaux 11 (1999) 201-210. | Numdam | Zbl
,[28] Substitutions in Arithmetics, Dynamics and Combinatorics, V. Berthé, S. Ferenczi, C.Mauduit, A. Siegel Eds., Springer Verlag. Lect. Notes Math. 1794 (2002). | MR | Zbl
,[29] Substitution Dynamical Systems. Spectral Analysis, Springer-Verlag. Lect. Notes Math. 1294 (1987). | MR | Zbl
,[30] Nombres algebriques et substitutions, Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | Zbl
,[31] On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. | Zbl
,[32] Geometry of Rauzy fractals. Pacific J. Math. 206 (2002) 465-485. | Zbl
, and ,[33] Invertible substitutions and Sturmian sequences. European J. Combinatorics 24 (2003) 983-1002. | Zbl
, and ,[34] Local isomorphisms of invertible substitutions. C. R. Acad. Sci. Paris Sér. I 318 (1994) 299-304. | Zbl
, and ,[35] On Sturmian sequences which are invariant under some substitutions, in Number theory and its applications (Kyoto, 1997). Kluwer Acad. Publ., Dordrecht (1999) 347-373. | Zbl
,Cité par Sources :