We study some arithmetical and combinatorial properties of -integers for being the larger root of the equation . We determine with the accuracy of 1 the maximal number of -fractional positions, which may arise as a result of addition of two -integers. For the infinite word coding distances between the consecutive -integers, we determine precisely also the balance. The word is the only fixed point of the morphism and . In the case , the corresponding infinite word is sturmian, and, therefore, -balanced. On the simplest non-sturmian example with 2, we illustrate how closely the balance and the arithmetical properties of -integers are related.
Mots clés : balance property, arithmetics, beta-expansions, infinite words
@article{ITA_2007__41_3_307_0, author = {Balkov\'a, Lubom{\'\i}ra and Pelantov\'a, Edita and Turek, Ond\v{r}ej}, title = {Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic {Parry} numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {307--328}, publisher = {EDP-Sciences}, volume = {41}, number = {3}, year = {2007}, doi = {10.1051/ita:2007025}, mrnumber = {2354360}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2007025/} }
TY - JOUR AU - Balková, Lubomíra AU - Pelantová, Edita AU - Turek, Ondřej TI - Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 307 EP - 328 VL - 41 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2007025/ DO - 10.1051/ita:2007025 LA - en ID - ITA_2007__41_3_307_0 ER -
%0 Journal Article %A Balková, Lubomíra %A Pelantová, Edita %A Turek, Ondřej %T Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 307-328 %V 41 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2007025/ %R 10.1051/ita:2007025 %G en %F ITA_2007__41_3_307_0
Balková, Lubomíra; Pelantová, Edita; Turek, Ondřej. Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 3, pp. 307-328. doi : 10.1051/ita:2007025. http://www.numdam.org/articles/10.1051/ita:2007025/
[1] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | Zbl
,[2] Cubic Pisot units with finite beta expansions, in Algebraic Number Theory and Diophantine Analysis, edited by F. Halter-Koch and R.F. Tichy. De Gruyter, Berlin (2000) 11-26. | Zbl
,[3] Arithmetics on number systems with irrational bases. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 641-659. | Zbl
, , and ,[4] Palindromic complexity of infinite words associated with simple Parry numbers. Ann. Institut Fourier 56 (2006) 2131-2160. | Numdam | Zbl
, , and ,[5] Addition and multiplication of beta-expansions in generalized Tribonacci base. Discrete Math. Theor. Comput. Sci. 9 (2007) 73-88. | MR
, and ,[6] Computation of for several cubic Pisot numbers. Discrete Math. Theor. Comput. Sci. 9 (2007) 175-194. | MR
,[7] Recent results on extension of sturmian words. Int. J. Algebr. Comput. 12 (2002) 371-385. | Zbl
,[8] Développements en base de Pisot et répartition modulo . C. R. Acad. Sci. Paris 285 (1977) 419-421. | Zbl
,[9] Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | Zbl
, , and ,[10] Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | Zbl
,[11] Finite -expansions. Ergodic Theory Dynam. Systems 12 (1994) 713-723. | Zbl
and ,[12] Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004) 163-185; Corrigendum, RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | EuDML | Numdam | Zbl
, and ,[13] Infinite special branches in words associated with beta-expansions. Discrete Math. Theor. Comput. Sci. 9 (2007) 125-144. | MR | Zbl
, and ,[14] Arithmetics of -expansions, Acta Arithmetica 112 (2004) 23-40. | EuDML | Zbl
, and ,[15] Linear numeration systems, finite beta-expansions, and discrete spectrum of substitution dynamical systems. Ph.D. Thesis, Washington University, USA (1996)
,[16] On a combinatorial property of sturmian words. Theoret. Comput. Sci. 154 (1996) 387-394. | Zbl
and ,[17] Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21 (1999) 161-191. | Zbl
,[18] Généralisation de la multiplication de Fibonacci. Math. Slovaca 50 (2000) 135-148. | EuDML | Zbl
,[19] Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond Quasicrystals, edited by F. Axel and D. Gratias. Springer (1995) 3-16. | Zbl
.[20] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
and ,[21] On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | Zbl
,[22] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | Zbl
,[23] On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | Zbl
,[24] Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951-1954.
, , and ,[25] Groups, tilings, and finite state automata, Geometry supercomputer project research report GCG1, University of Minnesota, USA (1989).
,[26] Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123-135. | EuDML | Numdam | Zbl
,Cité par Sources :