We divide infinite sequences of subword complexity into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let be an integer. If the expansion in base of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.
Mots clés : transcendental numbers, subword complexity, Rauzy graph
@article{ITA_2006__40_3_459_0, author = {K\"arki, Tomi}, title = {Transcendence of numbers with an expansion in a subclass of complexity 2n + 1}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {459--471}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, doi = {10.1051/ita:2006034}, mrnumber = {2269204}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2006034/} }
TY - JOUR AU - Kärki, Tomi TI - Transcendence of numbers with an expansion in a subclass of complexity 2n + 1 JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 459 EP - 471 VL - 40 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2006034/ DO - 10.1051/ita:2006034 LA - en ID - ITA_2006__40_3_459_0 ER -
%0 Journal Article %A Kärki, Tomi %T Transcendence of numbers with an expansion in a subclass of complexity 2n + 1 %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 459-471 %V 40 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2006034/ %R 10.1051/ita:2006034 %G en %F ITA_2006__40_3_459_0
Kärki, Tomi. Transcendence of numbers with an expansion in a subclass of complexity 2n + 1. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 459-471. doi : 10.1051/ita:2006034. http://www.numdam.org/articles/10.1051/ita:2006034/
[1] Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 11-14. | Zbl
, and ,[2] On the transcendence of real numbers with a regular expansion. J. Number Theory 103 (2003) 27-37. | Zbl
and ,[3] Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens 84 (2000) 19-34.
,[4] Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69 (1998) 119-124. | Zbl
and ,[5] Représentation géométrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | Zbl
and ,[6] Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997) 146-161. | Zbl
and ,[7] Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
and ,[8] Rational approximations to algebraic numbers. Mathematika 4 (1957) 125-131. | Zbl
,[9] A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000), 167-184. | Zbl
and ,Cité par Sources :