Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 459-471.

We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let k2 be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.

DOI : 10.1051/ita:2006034
Classification : 11J81, 68R15
Mots-clés : transcendental numbers, subword complexity, Rauzy graph
@article{ITA_2006__40_3_459_0,
     author = {K\"arki, Tomi},
     title = {Transcendence of numbers with an expansion in a subclass of complexity 2n + 1},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {459--471},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {3},
     year = {2006},
     doi = {10.1051/ita:2006034},
     mrnumber = {2269204},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2006034/}
}
TY  - JOUR
AU  - Kärki, Tomi
TI  - Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2006
SP  - 459
EP  - 471
VL  - 40
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2006034/
DO  - 10.1051/ita:2006034
LA  - en
ID  - ITA_2006__40_3_459_0
ER  - 
%0 Journal Article
%A Kärki, Tomi
%T Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2006
%P 459-471
%V 40
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2006034/
%R 10.1051/ita:2006034
%G en
%F ITA_2006__40_3_459_0
Kärki, Tomi. Transcendence of numbers with an expansion in a subclass of complexity 2n + 1. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 459-471. doi : 10.1051/ita:2006034. http://www.numdam.org/articles/10.1051/ita:2006034/

[1] B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 11-14. | Zbl

[2] B. Adamczewski and J. Cassaigne, On the transcendence of real numbers with a regular expansion. J. Number Theory 103 (2003) 27-37. | Zbl

[3] J.-P. Allouche, Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens 84 (2000) 19-34.

[4] J.-P. Allouche and L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69 (1998) 119-124. | Zbl

[5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | Zbl

[6] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997) 146-161. | Zbl

[7] G.A. Hedlund and M. Morse, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM

[8] D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957) 125-131. | Zbl

[9] R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000), 167-184. | Zbl

Cité par Sources :