Resolving an open problem of Ravikumar and Quan, we show that equivalence of prefix grammars is complete in PSPACE. We also show that membership for these grammars is complete in P (it was known that this problem is in P) and characterize the complexity of equivalence and inclusion for monotonic grammars. For grammars with several premises we show that membership is complete in EXPTIME and hard for PSPACE for monotonic grammars.
Mots-clés : rewriting systems, regular languages, computational complexity
@article{ITA_2005__39_2_391_0, author = {Lohrey, Markus and Petersen, Holger}, title = {Complexity results for prefix grammars}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {391--401}, publisher = {EDP-Sciences}, volume = {39}, number = {2}, year = {2005}, doi = {10.1051/ita:2005024}, mrnumber = {2142119}, zbl = {1133.68357}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2005024/} }
TY - JOUR AU - Lohrey, Markus AU - Petersen, Holger TI - Complexity results for prefix grammars JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 391 EP - 401 VL - 39 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2005024/ DO - 10.1051/ita:2005024 LA - en ID - ITA_2005__39_2_391_0 ER -
%0 Journal Article %A Lohrey, Markus %A Petersen, Holger %T Complexity results for prefix grammars %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 391-401 %V 39 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2005024/ %R 10.1051/ita:2005024 %G en %F ITA_2005__39_2_391_0
Lohrey, Markus; Petersen, Holger. Complexity results for prefix grammars. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 2, pp. 391-401. doi : 10.1051/ita:2005024. http://www.numdam.org/articles/10.1051/ita:2005024/
[1] Regular canonical systems. Archiv Math. Logik und Grundlagenforschung 6 (1964) 91-111. | Zbl
,[2] Finite Automata, their Algebras and Grammars. Springer, Berlin-Heidelberg-New York (1989). | MR | Zbl
,[3] Canonical systems which produce periodic sets. Math. Syst. Theor. 4 (1970) 81-90. | Zbl
and ,[4] On the regular structure of prefix rewriting. Theor. Comput. Sci. 106 (1992) 61-86. | Zbl
,[5] Alternation. J. Association Computing Machinery 28 (2981) 114-133. | Zbl
, and ,[6] Efficient algorithms for model checking pushdown systems, in Proc. of 12th International Conference on Computer Aided Verification (CAV), edited by E.A. Emerson and A.P. Sistla (Springer). Lect. Notes Comput. Sci. 1855 (2000) 232-247. | Zbl
, , and ,[7] Model checking LTL with regular valuations for pushdown systems. Inform. Comput. 186 (2003) 355-376. | Zbl
, and ,[8] Prefix grammars: An alternative characterization of the regular languages. Inform. Process. Lett. 51 (1994) 67-71. | Zbl
and ,[9] A note on pushdown store automata and regular systems, in Proc. of the AMS 18 (1967) 263-268. | Zbl
,[10] A linear algorithm for testing the equivalence of finite automata. Report TR 71-114, Department of Computer Science, Cornell University (1971).
and ,[11] Complete problems for deterministic polynomial time. Theor. Comput. Sci. 3 (1977) 105-117. | Zbl
and ,[12] Formal post calculi and finite automata. Problemy Kibernet. 17 (1966) 41-65. In Russian. | Zbl
,[13] Alternating pushdown and stack automata. SIAM J. Comput. 13 (1984) 135-155. | Zbl
, and ,[14] The equivalence problem for regular expressions with squaring requires exponential space, in Proc. of the 13th Annual IEEE Symposium on Switching and Automata Theory, College Park (Maryland) (1972) 125-129.
and ,[15] Computational Complexity. Addison Wesley (1994). | MR | Zbl
,[16] Prefix rewriting and descriptional complexity. J. Autom. Lang. Comb. 5 (2000) 245-254. | Zbl
,[17] Efficient algorithms for prefix grammars. Available at http://www.cs.sonoma.edu/~ravi (2002).
and ,[18] Word problems requiring exponential time, in Proc. of the 5th ACM Symposium on Theory of Computing (STOC'73), Austin (Texas) (1973) 1-9. | Zbl
and ,[19] Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser (1994). | MR | Zbl
,Cité par Sources :