Monoid presentations of groups by finite special string-rewriting systems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 3, pp. 245-256.

We show that the class of groups which have monoid presentations by means of finite special [λ]-confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group.

DOI : 10.1051/ita:2004012
Classification : 20E06, 20F05, 20F10, 68Q42
Mots-clés : group, monoid presentation, Cayley graph, special string-rewriting system, word problem
@article{ITA_2004__38_3_245_0,
     author = {Parkes, Duncan W. and Shavrukov, V. Yu. and Thomas, Richard M.},
     title = {Monoid presentations of groups by finite special string-rewriting systems},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {245--256},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {3},
     year = {2004},
     doi = {10.1051/ita:2004012},
     mrnumber = {2076402},
     zbl = {1071.20037},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2004012/}
}
TY  - JOUR
AU  - Parkes, Duncan W.
AU  - Shavrukov, V. Yu.
AU  - Thomas, Richard M.
TI  - Monoid presentations of groups by finite special string-rewriting systems
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2004
SP  - 245
EP  - 256
VL  - 38
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2004012/
DO  - 10.1051/ita:2004012
LA  - en
ID  - ITA_2004__38_3_245_0
ER  - 
%0 Journal Article
%A Parkes, Duncan W.
%A Shavrukov, V. Yu.
%A Thomas, Richard M.
%T Monoid presentations of groups by finite special string-rewriting systems
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2004
%P 245-256
%V 38
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2004012/
%R 10.1051/ita:2004012
%G en
%F ITA_2004__38_3_245_0
Parkes, Duncan W.; Shavrukov, V. Yu.; Thomas, Richard M. Monoid presentations of groups by finite special string-rewriting systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) no. 3, pp. 245-256. doi : 10.1051/ita:2004012. http://www.numdam.org/articles/10.1051/ita:2004012/

[1] R.V. Book and F. Otto, String-Rewriting Systems. Texts and Monographs in Computer Science, Springer-Verlag (1993). | MR | Zbl

[2] Y. Cochet, Church-Rosser congruences on free semigroups, in Algebraic Theory of Semigroups, edited by G. Pollák. Colloquia Mathematica Societatis János Bolyai 20, North-Holland Publishing Co. (1979) 51-60. | Zbl

[3] R.H. Haring-Smith, Groups and simple languages. Trans. Amer. Math. Soc. 279 (1983) 337-356. | Zbl

[4] T. Herbst and R.M. Thomas, Group presentations, formal languages and characterizations of one-counter groups. Theoret. Comput. Sci. 112 (1993) 187-213. | Zbl

[5] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer-Verlag (1977). | MR | Zbl

[6] K. Madlener and F. Otto, About the descriptive power of certain classes of finite string-rewriting systems. Theoret. Comput. Sci. 67 (1989) 143-172. | Zbl

[7] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, 2nd edn. Dover (1976). | MR | Zbl

Cité par Sources :