It is well known that, given an endofunctor on a category , the initial -algebras (if existing), i.e., the algebras of (wellfounded) -terms over different variable supplies , give rise to a monad with substitution as the extension operation (the free monad induced by the functor ). Moss [17] and Aczel, Adámek, Milius and Velebil [2] have shown that a similar monad, which even enjoys the additional special property of having iterations for all guarded substitution rules (complete iterativeness), arises from the inverses of the final -coalgebras (if existing), i.e., the algebras of non-wellfounded -terms. We show that, upon an appropriate generalization of the notion of substitution, the same can more generally be said about the initial -algebras resp. the inverses of the final -coalgebras for any endobifunctor on any category such that the functors uniformly carry a monad structure.
Mots-clés : algebras of terms, non-wellfounded terms, substitution, iteration of guarded substitution rules, monads, hyperfunctions, finitely or possibly infinitely branching trees
@article{ITA_2003__37_4_315_0, author = {Uustalu, Tarmo}, title = {Generalizing substitution}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {315--336}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ita:2003022}, mrnumber = {2053030}, zbl = {1042.18003}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003022/} }
TY - JOUR AU - Uustalu, Tarmo TI - Generalizing substitution JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 315 EP - 336 VL - 37 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003022/ DO - 10.1051/ita:2003022 LA - en ID - ITA_2003__37_4_315_0 ER -
%0 Journal Article %A Uustalu, Tarmo %T Generalizing substitution %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 315-336 %V 37 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003022/ %R 10.1051/ita:2003022 %G en %F ITA_2003__37_4_315_0
Uustalu, Tarmo. Generalizing substitution. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 315-336. doi : 10.1051/ita:2003022. http://www.numdam.org/articles/10.1051/ita:2003022/
[1] Algebras and coalgebras, in Revised Lectures from Int. Summer School and Wksh. on Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, ACMMPC 2000 (Oxford, April 2000), edited by R. Backhouse, R. Crole and J. Gibbons. Springer-Verlag, Lecture Notes in Comput. Sci. 2297 (2002) 79-88. | Zbl
,[2] Infinite trees and completely iterative theories: a coalgebraic view. Theor. Comput. Sci. 300 (2003) 1-45. | Zbl
, , and ,[3] Free iterative theories: a coalgebraic view. Math. Struct. Comput. Sci. 13 (2003) 259-320. | Zbl
, and ,[4] On rational monads and free iterative theories, in Proc. of 9th Int. Conf. on Category Theory and Computer Science, CTCS'02 (Ottawa, Aug. 2002), edited by R. Blute and P. Selinger. Elsevier, Electron. Notes Theor. Comput. Sci. 69 (2003).
, and ,[5] Coequalizers and free triples. Math. Z. 116 (1970) 307-322. | Zbl
,[6] Generalized coinduction. Math. Struct. Comput. Sci. 13 (2003) 321-348. | Zbl
,[7] Generalized coiteration schemata, in Proc. of 6th Wksh. on Coalgebraic Methods in Computer Science, CMCS'03 (Warsaw, Apr. 2003), edited by H.P. Gumm. Elsevier, Electron. Notes Theor. Comput. Sci. 82 (2003).
, and ,[8] Monadic computation and iterative algebraic theories, in Proc. of Logic Colloquium '73 (Bristol, July 1973), edited by H.E. Rose and J.C. Shepherdson. North-Holland, Stud. Logic Found Math. 80 (1975) 175-230. | Zbl
,[9] On the algebraic structure of rooted trees. J. Comput. Syst. Sci. 16 (1978) 362-399. | Zbl
, and ,[10] Dualising initial algebras. Math. Struct. Comput. Sci. 13 (2003) 349-370. | Zbl
, , and ,[11] Coalgebraic monads, in Proc. of 5th Wksh. on Coalgebraic Methods in Computer Science, CMCS'02 (Grenoble, Apr. 2001), edited by L.S. Moss. Elsevier, Electron. Notes Theor. Comput. Sci. 65 (2002). | Zbl
, and ,[12] Categories of processes enriched in final coalgebras, in Proc. of 4th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS'01 (Genova, Apr. 2001), edited by F. Honsell and M. Miculan. Springer-Verlag, Lecture Notes in Comput. Sci. 2030 (2001) 303-317. | Zbl
, and ,[13] From set-theoretic coinduction to coalgebraic coinduction: some results, some problems, in Proc. of 2nd Wksh. on Coalgebraic Methods in Computer Science, CMCS'99 (Amsterdam, March 1999), edited by B. Jacobs and J. Rutten. Elsevier, Electron. Notes Theor. Comput. Sci. 19 (1999). | Zbl
,[14] Algebraic theories, Graduate Texts in Mathematics 26. Springer-Verlag, New York (1976). | MR | Zbl
,[15] Substitution in non-wellfounded syntax with variable binding, in Proc. of 6th Wksh. on Coalgebraic Methods in Computer Science, CMCS'03 (Warsaw, Apr. 2003), edited by H.P. Gumm. Elsevier, Electron. Notes Theor. Comput. Sci. 82 (2003). | Zbl
and ,[16] On iteratable endofunctors, in Proc. of 9th Int. Conf. on Category Theory and Computer Science, CTCS'02 (Ottawa, Aug. 2002), edited by R. Blute and P. Selinger. Elsevier, Electron. Notes Theor. Comput. Science 69 (2003). | Zbl
,[17] Parametric corecursion. Theor. Comput. Sci. 260 (2001) 139-163. | Zbl
,[18] Notes on monads for functional programming, unpublished draft (1995).
,[19]
, (Co)monads from inductive and coinductive types, in Proc. of 2001 APPIA-GULP-PRODE Joint Conf. on Declarative Programming, AGP'01 (Évora, Sept. 2001), edited by L.M. Pereira and P. Quaresma. Dep. de Informática, Univ. do Évora (2001) 47-61.[20] Primitive (co)recursion and course-of-value (co)iteration, categorically. Informatica 10 (1999) 5-26. | Zbl
and ,[21] The dual of substitution is redecoration, in Trends in Functional Programming 3, edited by K. Hammond and S. Curtis. Intellect, Bristol & Portland, OR (2002) 99-110.
and ,[22] Recursion schemes from comonads. Nordic J. Comput. 8 (2001) 366-390. | Zbl
, and ,Cité par Sources :