Traced premonoidal categories
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 273-299.

Motivated by some examples from functional programming, we propose a generalization of the notion of trace to symmetric premonoidal categories and of Conway operators to Freyd categories. We show that in a Freyd category, these notions are equivalent, generalizing a well-known theorem relating traces and Conway operators in cartesian categories.

DOI : 10.1051/ita:2003020
Classification : 68N18, 03B70, 03G30
Mots-clés : traces, fixed point operators, premonoidal categories, recursion, monads
@article{ITA_2003__37_4_273_0,
     author = {Benton, Nick and Hyland, Martin},
     title = {Traced premonoidal categories},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {273--299},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/ita:2003020},
     mrnumber = {2053028},
     zbl = {1110.68356},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2003020/}
}
TY  - JOUR
AU  - Benton, Nick
AU  - Hyland, Martin
TI  - Traced premonoidal categories
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2003
SP  - 273
EP  - 299
VL  - 37
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2003020/
DO  - 10.1051/ita:2003020
LA  - en
ID  - ITA_2003__37_4_273_0
ER  - 
%0 Journal Article
%A Benton, Nick
%A Hyland, Martin
%T Traced premonoidal categories
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2003
%P 273-299
%V 37
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2003020/
%R 10.1051/ita:2003020
%G en
%F ITA_2003__37_4_273_0
Benton, Nick; Hyland, Martin. Traced premonoidal categories. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 273-299. doi : 10.1051/ita:2003020. http://www.numdam.org/articles/10.1051/ita:2003020/

[1] R.S. Bird, Using circular programs to eliminate multiple traversals of data. Acta Informatica 21 (1984) 239-250. | Zbl

[2] P. Bjesse, K. Claessen, M. Sheeran and S. Singh, Lava: Hardware design in Haskell, in International Conference on Functional Programming (1998).

[3] S.L. Bloom and Z. Ésik, Axiomatizing schemes and their behaviors. J. Comput. Syst. Sci. 31 (1985) 375-393. | MR | Zbl

[4] S.L. Bloom and Z. Ésik, Iteration Theories. EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1993). | MR | Zbl

[5] V.E. Cazanescu and Gh. Stefanescu, A general result on abstract flowchart schemes with applications to the study of accessibility, reduction and minimization. Theor. Comput. Sci. 99 (1992) 1-63. | MR | Zbl

[6] K. Claessen and D. Sands, Observable sharing for functional circuit description, in Asian Computing Science Conference (1999).

[7] J.H. Conway, Regular Algebra and Finite Machines. Chapman Hall (1971). | Zbl

[8] R.L. Crole and A.M. Pitts, New foundations for fixpoint computations: FIX-hyperdoctrines and the FIX-logic. Inf. Comput. 98 (1992) 171-210. | MR | Zbl

[9] L. Erkök, Value Recursion in Monadic Computations. Ph.D. thesis, Oregon Graduate Institute, OHSU (October 2002).

[10] L. Erkök, J. Launchbury and A. Moran, Semantics of value recursion for monadic input/output. RAIRO Theoret. Informatics Appl. 36 (2002) 155-180. | Numdam | MR | Zbl

[11] Z. Ésik, Axiomatizing iteration categories. Acta Cybernet. 14 (1999). | MR | Zbl

[12] Z. Ésik, Group axioms for iteration. Inf. Comput. 148 (1999) 131-180 | MR | Zbl

[13] D.P. Friedman and A. Sabry, Recursion is a computational effect. Technical Report 546, Computer Science Department, Indiana University (December 2000).

[14] C. Fuhrmann, A. Bucalo and A. Simpson, An equational notion of lifting monad. Theor. Comput. Sci. 294 (2003) 31-60. | MR | Zbl

[15] J.-Y. Girard, Towards a geometry of interaction, in Categories in Computer Science and Logic, edited by J.W. Gray and A. Scedrov. Contemp. Math. 92 (1989) 69-108. | MR | Zbl

[16] M. Hasegawa, Models of Sharing Graphs (A Categorical Semantics of Let and Letrec). Distinguished Dissertations in Computer Science, Springer-Verlag (1999). | MR | Zbl

[17] M. Hasegawa, The uniformity principle on traced monoidal categories, edited by R. Blute and P. Selinger. Elsevier, Electronic Notes in Theor. Comput. Sci. (2003). | MR

[18] J. Hughes, Generalising monads to arrows. Sci. Comput. Program. 37 (2000) 67-112. | MR | Zbl

[19] M. Hyland and A.J. Power, Symmetric monoidal sketches, in Proc. of the 2nd Conference on Principles and Practice of declarative Programming (2000) 280-288.

[20] A. Jeffrey, Premondoidal categories and a graphical view of programs. http://www.cogs.susx.ac.uk/users/alanje/premon/ (June 1998).

[21] A. Joyal, R. Street and D. Verity, Traced monoidal categories. Math. Proc. Cambridge Philoso. Soc. 119 (1996). | MR | Zbl

[22] J. Launchbury and L. Erkök, Recursive monadic bindings, in International Conference on Functional Programming (2000).

[23] J. Launchbury, J.R. Lewis and B. Cook, On embedding a microarchitectural design language within Haskell. International Conference on Functional Programming (1999).

[24] J. Launchbury and S.L. Peyton Jones, State in Haskell. Lisp and Symbolic Computation 8 (1995) 293-341.

[25] E. Moggi, Notions of computation and monads. Inf. Comput. 93 (1991) 55-92. | MR | Zbl

[26] E. Moggi and A. Sabry, An abstract monadic semantics for value recursion, in Proc. of the 2003 Workshop on Fixed Points in Computer Science (April 2003). | Numdam | MR

[27] P.S. Mulry, Strong monads, algebras and fixed points, in Applications of Categories in Computer Science, edited by M.P. Fourman, P.T. Johnstone and A.M. Pitts. LMS Lecture Notes 177 (1992) 202-216. | MR | Zbl

[28] R. Paterson, A new notation for arrows, in Proc. of the International Conference on Functional Programming. ACM Press (September 2001).

[29] R. Paterson, Arrows and computation, in The Fun of Programming, edited by J. Gibbons and O. de Moor. Palgrave (2003) 201-222.

[30] A.J. Power and E.P. Robinson, Premonoidal categories and notions of computation. Math. Struct. Comput. Sci. 7 (1997) 453-468. | MR | Zbl

[31] A.J. Power and H. Thielecke, Closed Freyd and κ-categories. International Conference on Automata, Languages and Programming (1999). | MR | Zbl

[32] A.K. Simpson and G.D. Plotkin, Complete axioms for categorical fixed-point operators, in Proc. of 15th Annual Symposium on Logic in Computer Science. IEEE Computer Society (2000). | MR

[33] P. Wadler, The essence of functional programming, in Proc. of the 19th Symposium on Principles of Programming Languages. ACM (1992).

Cité par Sources :