We show that the size of a Las Vegas automaton and the size of a complete, minimal deterministic automaton accepting a regular language are polynomially related. More precisely, we show that if a regular language is accepted by a Las Vegas automaton having states such that the probability for a definite answer to occur is at least , then , where is the number of the states of the minimal deterministic automaton accepting . Earlier this result has been obtained in [2] by using a reduction to one-way Las Vegas communication protocols, but here we give a direct proof based on information theory.
Mots-clés : Las Vegas automata, information theory
@article{ITA_2003__37_1_39_0, author = {Hirvensalo, Mika and Seibert, Sebastian}, title = {Lower bounds for {Las} {Vegas} automata by information theory}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {39--49}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/ita:2003007}, mrnumber = {1991750}, zbl = {1084.68061}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003007/} }
TY - JOUR AU - Hirvensalo, Mika AU - Seibert, Sebastian TI - Lower bounds for Las Vegas automata by information theory JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 39 EP - 49 VL - 37 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003007/ DO - 10.1051/ita:2003007 LA - en ID - ITA_2003__37_1_39_0 ER -
%0 Journal Article %A Hirvensalo, Mika %A Seibert, Sebastian %T Lower bounds for Las Vegas automata by information theory %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 39-49 %V 37 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003007/ %R 10.1051/ita:2003007 %G en %F ITA_2003__37_1_39_0
Hirvensalo, Mika; Seibert, Sebastian. Lower bounds for Las Vegas automata by information theory. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 1, pp. 39-49. doi : 10.1051/ita:2003007. http://www.numdam.org/articles/10.1051/ita:2003007/
[1] Elements of Information Theory. John Wiley & Sons, Inc. (1991). | MR | Zbl
and ,[2] Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations. Springer, Lecture Notes in Comput. Sci. 1200 (1997) 117-128. | MR
, , and ,[3]
, personal communication.[4] On quantum and probabilistic communication: Las Vegas and one-way protocols, in Proc. of the ACM Symposium on Theory of Computing (2000) 644-651. | MR
,[5] Computational Complexity. Addison-Wesley (1994). | MR | Zbl
,[6] Regular Languages, edited by G. Rozenberg and A. Salomaa. Springer, Handb. Formal Languages I (1997).
,Cité par Sources :