In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
Mots-clés : integer partitions, tilings of $2D$-gons, lattices, sand pile model, discrete dynamical models
@article{ITA_2002__36_4_389_0, author = {Latapy, Matthieu}, title = {Integer partitions, tilings of $2D$-gons and lattices}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {389--399}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/ita:2003004}, mrnumber = {1965424}, zbl = {1028.05010}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003004/} }
TY - JOUR AU - Latapy, Matthieu TI - Integer partitions, tilings of $2D$-gons and lattices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 389 EP - 399 VL - 36 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003004/ DO - 10.1051/ita:2003004 LA - en ID - ITA_2002__36_4_389_0 ER -
%0 Journal Article %A Latapy, Matthieu %T Integer partitions, tilings of $2D$-gons and lattices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 389-399 %V 36 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003004/ %R 10.1051/ita:2003004 %G en %F ITA_2002__36_4_389_0
Latapy, Matthieu. Integer partitions, tilings of $2D$-gons and lattices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 389-399. doi : 10.1051/ita:2003004. http://www.numdam.org/articles/10.1051/ita:2003004/
[1] The Theory of Partitions. Addison-Wesley Publishing Company, Encyclopedia Math. Appl. 2 (1976). | MR | Zbl
,[2] Coherence and enumeration of tilings of 3-zonotopes. Discrete Comput. Geom. 22 (1999) 119-147. | MR | Zbl
,[3] Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Ph.D. Thesis. University of Minnesota (1997).
,[4] The lattice of integer partitions. Discrete Math. 6 (1973) 210-219. | MR | Zbl
,[5] Introduction to Lattices and Orders. Cambridge University Press (1990). | MR | Zbl
and ,[6] Algebraic theory of penrose's non-periodic tilings of the plane. Konink. Nederl. Akad. Wetensch. Proc. Ser. A 43 (1981). | Zbl
,[7] Dualization of multigrids. J. Phys. France Coloq (1981) 3-9. | MR
,[8] Configurational entropy of codimension-one tilings and directed membranes. J. Statist. Phys. 87 (1997) 697. | MR | Zbl
, and ,[9] Fixed-boundary octogonal random tilings: A combinatorial approach. Preprint (1999). | Zbl
, and ,[10] Entropie configurationnelle des pavages aléatoires et des membranes dirigées, Ph.D. Thesis. University Paris VI (1997).
,[11] Rhombic tilings of polygons and classes of reduced words in coxeter groups. J. Combin. Theory 77 (1997) 193-221. | MR | Zbl
,[12] Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | MR | Zbl
and ,[13] Tilings of polygons with parallelograms. Algorithmica 9 (1993) 382-397. | MR | Zbl
,[14] The lattice of integer partitions and its infinite extension, in DMTCS, Special Issue, Proc. of ORDAL'99. Preprint (to appear) available at http://www.liafa.jussieu.fr/~latapy/
and ,[15] Generalized integer partitions, tilings of zonotopes and lattices, in Proc. of the 12-th international conference Formal Power Series and Algebraic Combinatorics (FPSAC'00), edited by A.A. Mikhalev, D. Krob and E.V. Mikhalev. Springer (2000) 256-267. Preprint available at http://www.liafa.jussieu.fr/~latapy/ | Zbl
, , , and Ha Duong Phan, Structure of some sand piles model. Theoret. Comput. Sci. 262 (2001) 525-556. Preprint available at http://www.liafa.jussieu.fr/~latapy/ |[17] Ordered structures and partitions. Mem. ACM 119 (1972). | MR | Zbl
,[18] Lectures on Polytopes. Springer-Verlag, Grad. Texts in Math. (1995). | MR | Zbl
,Cité par Sources :