We prove that, with high probability, the space complexity of refuting a random unsatisfiable Boolean formula in -CNF on variables and clauses is .
Mots-clés : random formulae, space complexity, satisfiability threshold
@article{ITA_2002__36_4_329_0, author = {Zito, Michele}, title = {An upper bound on the space complexity of random formulae in resolution}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {329--339}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/ita:2003003}, mrnumber = {1965420}, zbl = {1034.68050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003003/} }
TY - JOUR AU - Zito, Michele TI - An upper bound on the space complexity of random formulae in resolution JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 329 EP - 339 VL - 36 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003003/ DO - 10.1051/ita:2003003 LA - en ID - ITA_2002__36_4_329_0 ER -
%0 Journal Article %A Zito, Michele %T An upper bound on the space complexity of random formulae in resolution %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 329-339 %V 36 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003003/ %R 10.1051/ita:2003003 %G en %F ITA_2002__36_4_329_0
Zito, Michele. An upper bound on the space complexity of random formulae in resolution. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 329-339. doi : 10.1051/ita:2003003. http://www.numdam.org/articles/10.1051/ita:2003003/
[1] Optimal myopic algorithms for random 3-SAT, in 41st Annual Symposium on Foundations of Computer Science (2000) 590-600. | MR
and ,[2] Space complexity in propositional calculus, in Proc. of the 32nd Annual ACM Symposium on Theory of Computing. Portland, OR (2000).
, , and ,[3] On the complexity of unsatisfiability proofs for random -CNF formulas, in Proc. of the 30th Annual ACM Symposium on Theory of Computing. New York (1998) 561-571. | MR | Zbl
, , and ,[4] Space complexity of random formulae in resolution, in Proc. of the 16th Annual IEEE Conference on Computational Complexity. IEEE Computer Society (2001).
and ,[5] The scaling window of the 2-SAT transition. Random Structures Algorithms 18 (2001) 201-256. | MR | Zbl
, , , and ,[6] Where the really hard problems are, in Proc. of IJCAI-91, edited by Kauffmann (1991) 331-337. | Zbl
, and ,[7] Many hard examples for resolution. J. ACM 35 (1988) 759-768. | MR | Zbl
and ,[8] The relative efficiency of propositional proof systems. J. Symb. Logic 44 (1979) 36-50. | MR | Zbl
and ,[9] A machine program for theorem proving. Commun. ACM 5 (1962) 394-397. | MR | Zbl
, and ,[10] A computing procedure for quantification theory. J. ACM 7 (1960) 201-215. | MR | Zbl
and ,[11] Space bounds for resolution, edited by C. Meinel and S. Tison, in STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1563 (1999) 551-560. | MR | Zbl
and ,[12] A threshold for unsatisfiability. J. Comput. System Sci. 53 (1996) 469-486. | MR | Zbl
,[13] A guided tour of Chernoff bounds. Inform. Process. Lett. 33 (1989) 305-308. | MR | Zbl
and ,[14] Coupon collectors, -binomial coefficients and the unsatisfiability threshold, edited by A. Restivo, S. Ronchi della Rocca and L. Roversi. Theoret. Comput. Sci., in 7th Italian Conference, ICTCS 2001. Springer-Verlag, Lecture Notes in Comput. Sci. 2202 (2001) 328-338. | MR | Zbl
, , , and ,[15] Beyond the quartic equation. Birkhauser, Boston, MA (1996). | MR | Zbl
,[16] An algorithm for calculating the roots of a general quintic equation from its coefficients. J. Math. Phys. 32 (1991) 823-825. | MR | Zbl
and ,[17] Galois Theory. Chapman and Hall, London (1973). | MR | Zbl
,[18] Lower bounds for the space used in resolution, edited by J. Flum and M. Rodriguez-Artalejo, in Computer Science Logic: 13th International Workshop, CSL'99, 8th Annual Conference of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings. Springer-Verlag, Lecture Notes in Comput. Sci. 1683 (1999). | Zbl
,[19] Algebra. Frederick Ungar Publishing Co., New York (1970).
,[20] Handbook of Tables for Mathematics. Cleveland: The Chemical Rubber Co. (1964). | MR | Zbl
,Cité par Sources :