Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers
Mots-clés : numeration system, Pisot number, finite automaton, periodic point
@article{ITA_2002__36_3_293_0, author = {Frougny, Christiane}, title = {On multiplicatively dependent linear numeration systems, and periodic points}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {293--314}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/ita:2002015}, mrnumber = {1958245}, zbl = {1044.11004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2002015/} }
TY - JOUR AU - Frougny, Christiane TI - On multiplicatively dependent linear numeration systems, and periodic points JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 293 EP - 314 VL - 36 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2002015/ DO - 10.1051/ita:2002015 LA - en ID - ITA_2002__36_3_293_0 ER -
%0 Journal Article %A Frougny, Christiane %T On multiplicatively dependent linear numeration systems, and periodic points %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 293-314 %V 36 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2002015/ %R 10.1051/ita:2002015 %G en %F ITA_2002__36_3_293_0
Frougny, Christiane. On multiplicatively dependent linear numeration systems, and periodic points. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 3, pp. 293-314. doi : 10.1051/ita:2002015. http://www.numdam.org/articles/10.1051/ita:2002015/
[1] Pisot and Salem numbers. Birkhäuser (1992). | Zbl
, , , and ,[2] Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285 (1977) 419-421. | MR | Zbl
,[3] Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. | Zbl
,[4] An extension of the Cobham-Semënov Theorem. J. Symb. Logic 65 (2000) 201-211. | Zbl
,[5] Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66-92. | MR | Zbl
,[6] Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17-43. | MR | Zbl
and ,[7] On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969) 186-192. | MR | Zbl
,[8] A generalization of Cobham's Theorem. Theory Comput. Systems 31 (1998) 169-185. | Zbl
,[9] Automata, Languages and Machines, Vol. A. Academic Press (1974). | MR | Zbl
,[10] Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994) 197-208. | MR | Zbl
,[11] Systems of numeration. Amer. Math. Monthly 92 (1985) 105-114. | MR | Zbl
,[12] Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60. | MR | Zbl
,[13] Conversion between two multiplicatively dependent linear numeration systems, in Proc. of LATIN 02. Springer-Verlag, Lectures Notes in Comput. Sci. 2286 (2002) 64-75. | MR
,
[14] Automatic conversion from Fibonacci representation to representation in base
[15] On Representation of Integers in Linear Numeration Systems 228 (1996) 345-368. | MR | Zbl
and ,
[16] On the context-freeness of the
[17] Systèmes de numération indépendants et syndéticité. Theoret. Comput. Sci. 204 (1998) 119-130. | MR | Zbl
,[18] Greedy numeration systems and regularity. Theory Comput. Systems 31 (1998) 111-133. | MR | Zbl
,[19] An Introduction to Symbolic Dynamics. Cambridge University Press (1995). | MR | Zbl
and ,[20] Algebraic Combinatorics on Words. Cambridge University Press (2002). | MR | Zbl
,
[21] On the
[22] A dynamical property unique to the Lucas sequence. Fibonacci Quartely 39 (2001) 398-402. | MR | Zbl
and ,[23] Arithmetic and growth of periodic orbits. J. Integer Sequences 4 (2001), Article 01.2.1. | MR | Zbl
and ,[24] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl
,[25] The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977) 289-299. | MR | Zbl
,[26] Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. | MR | Zbl
,- On the beta-expansion of 1 in the formal power series field., International Journal of Number Theory, Volume 2 (2006) no. 3, pp. 365-378 | DOI:10.1142/s1793042106000619 | Zbl:1157.11004
Cité par 1 document. Sources : zbMATH