We prove a long standing conjecture of Duval in the special case of sturmian words.
@article{ITA_2002__36_1_1_0, author = {Mignosi, Filippo and Zamboni, Luca Q.}, title = {A note on a conjecture of {Duval} and sturmian words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {1--3}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/ita:2002001}, mrnumber = {1928155}, zbl = {1013.68152}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2002001/} }
TY - JOUR AU - Mignosi, Filippo AU - Zamboni, Luca Q. TI - A note on a conjecture of Duval and sturmian words JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 1 EP - 3 VL - 36 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2002001/ DO - 10.1051/ita:2002001 LA - en ID - ITA_2002__36_1_1_0 ER -
%0 Journal Article %A Mignosi, Filippo %A Zamboni, Luca Q. %T A note on a conjecture of Duval and sturmian words %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 1-3 %V 36 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2002001/ %R 10.1051/ita:2002001 %G en %F ITA_2002__36_1_1_0
Mignosi, Filippo; Zamboni, Luca Q. A note on a conjecture of Duval and sturmian words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 1-3. doi : 10.1051/ita:2002001. http://www.numdam.org/articles/10.1051/ita:2002001/
[1] Représentation géométrique des suites de complexité Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
and ,[2] Une Caractérisation des mots périodiques. Discrete Math. 25 (1979) 1-5. | MR | Zbl
and ,[3] Relationship between the Period of a Finite Word and the Length of its Unbordered Segments. Discrete Math. 40 (1982) 31-44. | MR | Zbl
,[4] Periodicity and Unbordered Segments of words. Discrete Math. 26 (1979) 101-109. | MR | Zbl
and ,[5] Lothaire, Algebraic Combinatorics on Words, Chap. 9 Periodicity, Chap. 3 Sturmian Words. Cambridge University Press (to appear). Available at http://www-igm.univ-mlv.fr/berstel | MR | Zbl
[6] A rather curious characteristic property of standard Sturmian words, to appear in Algebraic Combinatorics, edited by G. Rota, D. Senato and H. Crapo. Springer-Verlag Italia, Milano (in press). | MR | Zbl
,[7] Morphismes sturmiens et règles de Rauzy. J. Théorie des Nombres de Bordeaux 5 (1993) 221-233. | Numdam | MR | Zbl
and ,[8] Mots infinis en arithmétique, in Automata on Infinite Words, edited by M. Nivat and D. Perrin. Lecture Notes in Comput. Sci. 192 (1985) 167-171. | MR | Zbl
,[9] A generalization of Sturmian sequences; combinatorial structure and transcendence. Acta Arith. 95 (2000). | MR | Zbl
and ,Cité par Sources :