We consider reflexive and involutive transition systems over an ordered alphabet A equipped with an involution. We give a description of the injective envelope of any two-element set in terms of Galois lattice, from which we derive a test of its finiteness. Our description leads to the notion of Ferrers language.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2020005
Mots-clés : Metric spaces, injective envelopes, transition systems, Ferrers languages, ordered sets, interval orders, well-quasi-order
@article{ITA_2020__54_1_A4_0, author = {Kabil, Mustapha and Pouzet, Maurice}, title = {Injective envelopes of transition systems and {Ferrers} languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, publisher = {EDP-Sciences}, volume = {54}, year = {2020}, doi = {10.1051/ita/2020005}, mrnumber = {4099806}, zbl = {1481.06022}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2020005/} }
TY - JOUR AU - Kabil, Mustapha AU - Pouzet, Maurice TI - Injective envelopes of transition systems and Ferrers languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2020 VL - 54 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2020005/ DO - 10.1051/ita/2020005 LA - en ID - ITA_2020__54_1_A4_0 ER -
%0 Journal Article %A Kabil, Mustapha %A Pouzet, Maurice %T Injective envelopes of transition systems and Ferrers languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2020 %V 54 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2020005/ %R 10.1051/ita/2020005 %G en %F ITA_2020__54_1_A4_0
Kabil, Mustapha; Pouzet, Maurice. Injective envelopes of transition systems and Ferrers languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 54 (2020), article no. 4. doi : 10.1051/ita/2020005. http://www.numdam.org/articles/10.1051/ita/2020005/
[1] Extensions of uniformly continuous transformations and hyperconvex metric spaces. Pac. J. Math. 6 (1956) 405–439. | DOI | MR | Zbl
and ,[2] Categorical characterization of the MacNeille completion. Arch. Math. Basel 18 (1967) 369–377. | DOI | MR | Zbl
and ,[3] Boolean geometry. Rend. Circ. Mat. Palermo 2 (1952) 343–360. | MR | Zbl
,[4] Theory and Applications of Distance Geometry, 2nd edn. Chelsea Publishing Co., New York (1970) xi+347. | MR | Zbl
,[5] Studies in Geometry, W. H. Freeman and Co., San Francisco, California (1970) xiv+512. | MR | Zbl
and ,[6] Codages et Dimensions de Relations Binaires, Orders: Description and Roles. In Vol. 23 of Annals of Discrete Mathematics. Edited by and . Elsevier Amsterdam, The Netherlands (1984) 387–396. | MR | Zbl
,[7] On the Ferrers dimension of a digraph. Discrete Math. 38 (1982) 47–52. | DOI | MR | Zbl
,[8] Sur les ensembles ordonnés projectifs et la propriété du points fixe. C. R. Acad. Sci. Paris, Série A311 (1990) 199–204. | MR | Zbl
,[9] Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002) xii+298. | MR | Zbl
and ,[10] Encyclopedia of Distances, 4th edn. Springer, Berlin (2016) xxii+756. | MR | Zbl
, ,[11] On realizable biorders and the biorder dimension of a relation. J. Math. Psych. 28 (1984) 73–109. | DOI | MR | Zbl
, , ,[12] Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups, a note on combinatorial properties of metric spaces. Adv. Math. 53 (1984) 321–402. | DOI | MR | Zbl
,[13] Towards a classification of transitive group actions on finite metric spaces. Adv. Math. 74 (1989) 163–189. | DOI | MR | Zbl
,[14] A structure theory of ordered sets. J. Discrete Math. 35 (1981) 53–118. | DOI | MR | Zbl
, ,[15] On regularity of context-free languages. Theor. Comput. Sci. 27 (1983) 311–332. | DOI | MR | Zbl
, and ,[16] Semigroups in Complete Lattices: Quantales, Modules and Related Topics, Developments in Mathematics. Springer, Berlin (2018). | DOI | MR
, , and ,[17] Introduction to Hyperconvex Spaces, in Handbook of Metric Fixed Point Theory. Kluwer Academic Publisher, Dordrecht (2001) 391–435. | MR | Zbl
and ,[18] Interval Orders and Interval Graphs. Wiley Hoboken, NJ, USA (1985). | MR | Zbl
,[19] Ordering by divisbility in abstract algebra. Proc. London Math. Soc. 3 (1952) 326–336. | DOI | MR | Zbl
,[20] Rétractions, corétractions et envelope injective d’une algèbre de transitions. Discrete Math. 247 (2002) 117–134. | DOI | MR | Zbl
,[21] Injective envelope and parallel decomposition of a transition system. Discrete Math. 289 (2004) 45–61. | DOI | MR | Zbl
,[22] Six theorems about injective metric spaces. Comment. Math. Helv. 39 (1964) 65–76. | DOI | MR | Zbl
,[23] Retracts graphs and ordered sets from the metric point of view. Contemp. Math. 57 (1986) 175–226. | DOI | MR | Zbl
, and ,[24] Sur un théorème d’extension dans la théorie des mots. C. R. Acad. Sci. Paris Série 266 (1968) 851–854. | MR | Zbl
,[25] Representation of integral quantales by tolerances. Algebra Universalis 79 (2018) 5. | DOI | MR | Zbl
and ,[26] Une extension d’un théorème de P. Jullien sur les âges de mots. RAIRO: ITA 26 (1992) 449–482. | Numdam | MR | Zbl
, ,[27] Indécomposabilité et irréductibilité dans la variété des rétractes absolus des graphes réflexifs. C. R. Acad. Sci. Paris Série A 321 (1995) 499–504. | MR | Zbl
and ,[28] Une approche métrique de l’indécomposabilité et de l’irréductibilité dans la variété des rétractes absolus des graphes et des systèmes de transitions. Thèse de doctorat d’État, Université Hassan II Aïn Chock, Casablanca, Morocco, 19 Décembre (1996).
,[29] Injective envelope of graphs and transition systems. Discrete Math. 192 (1998) 145–186. | DOI | MR | Zbl
and ,[30] Free monoids and metric spaces. Euro. J. Combinatorics 80 (2019) 339–360. | DOI | MR | Zbl
, and ,[31] Geometric Aspects of Generalized Metric Spaces: Relations with Graphs, Ordered Sets and Automata, Chap.11, in New Trends in Analysis and Geometry, edited by , and . Cambridge Scholars Publishing, Cambridge (2020) 319–377.
and ,[32] The number of monotonic Boolean functions. Problemy Kibern 38 (1981) 5–108. | MR | Zbl
,[33] Combinatorics on Words, Encyclopedia Mathematics Applied, Addison-Wesley, Boston, USA (1983) 17. | MR | Zbl
,[34] Probabilistic geometry. Proc. Natl. Acad. Sci. USA 37 (1951) 226–229. | DOI | MR | Zbl
,[35] Personnalcommunication (1989).
,[36] The smallest graph variety containing all paths. J. Discrete Math. 43 (1983) 185–198. | MR | Zbl
and ,[37] Une Approche Métrique de la Rétraction dans les Ensembles Ordonnés et les graphes, (French) [A Metric Approach to Retraction in Ordered Sets and Graphs] Proceedings of the conference on infinitistic mathematics (Lyon, 1984), 59–89, Publ. Dép. Math. Nouvelle Sér. B, 85-2, Univ. Claude-Bernard, Lyon (1985). | Numdam | MR | Zbl
,[38] General metrics and contracting operations. Discrete Math. 130 (1994) 103–169. | MR | Zbl
and ,[39] When is the orbit algebra of a group an integral domain? Proof of a conjecture of P. J. Cameron. Theor. Inform. Appl. 42 (2008) 83–103. | DOI | Numdam | MR | Zbl
,[40] Finite dimensional scattered posets. Euro. J. Combinatorics 37 (2014) 79–99. | DOI | MR | Zbl
and , ,[41] Les relations de Ferrers. C. R. Acad. Sci. Paris Série A 232 (1951) 1729–1730. | MR | Zbl
,[42] Graphe et languages: une approche metrique. Thèse de doctorat, Université Claude-Bernard, Lyon, France (1991).
,[43] Elements of Automata Theory, Translated from the 2003 French original by Reuben Thomas. Cambridge University Press, Cambridge (2009). | MR | Zbl
,[44] Piecewise Testable Events, Automata Theory and Formal Languages (Second GI Conf., Kaiserslautern, 1975), In Vol. 33 of Lecture Notes in Comput. Sciences. Springer, Berlin (1975) 214–222. | MR | Zbl
,[45] Characterizations of some classes of regular events. Theor. Comput. Sci. 35 (1985) 17–42. | DOI | MR | Zbl
,[46] Factorisations des Monoïdes. Thèse de 3ème cycle, Paris, Janvier (1971).
,[47] A computation of the eight Dedekind number. Order 8 (1991) 5–6. | DOI | MR | Zbl
,[48] A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17 (1914) 441–449. | JFM
,Cité par Sources :
Dedicated to the memory of Maurice Nivat.