Language classes associated with automata over matrix groups
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 253-268.

We investigate the language classes recognized by group automata over matrix groups. For the case of 2 × 2 matrices, we prove that the corresponding group automata for rational matrix groups are more powerful than the corresponding group automata for integer matrix groups. Finite automata over some special matrix groups, such as the discrete Heisenberg group and the Baumslag-Solitar group are also examined. We also introduce the notion of time complexity for group automata and demonstrate some separations among related classes. The case of linear-time bounds is examined in detail throughout our repertory of matrix group automata.

DOI : 10.1051/ita/2018017
Classification : 68Q45, 68Q05
Mots-clés : Group automata, time complexity
Salehi, Özlem 1 ; D’Alessandro, Flavio 1 ; Say, A.C. Cem 1

1
@article{ITA_2018__52_2-3-4_253_0,
     author = {Salehi, \"Ozlem and D{\textquoteright}Alessandro, Flavio and Say, A.C. Cem},
     editor = {Bordihn, Henning and Nagy, Benedek and Vaszil, Gy\"orgy},
     title = {Language classes associated with automata over matrix groups},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {253--268},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2-3-4},
     year = {2018},
     doi = {10.1051/ita/2018017},
     mrnumber = {3915312},
     zbl = {1429.68105},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2018017/}
}
TY  - JOUR
AU  - Salehi, Özlem
AU  - D’Alessandro, Flavio
AU  - Say, A.C. Cem
ED  - Bordihn, Henning
ED  - Nagy, Benedek
ED  - Vaszil, György
TI  - Language classes associated with automata over matrix groups
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2018
SP  - 253
EP  - 268
VL  - 52
IS  - 2-3-4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2018017/
DO  - 10.1051/ita/2018017
LA  - en
ID  - ITA_2018__52_2-3-4_253_0
ER  - 
%0 Journal Article
%A Salehi, Özlem
%A D’Alessandro, Flavio
%A Say, A.C. Cem
%E Bordihn, Henning
%E Nagy, Benedek
%E Vaszil, György
%T Language classes associated with automata over matrix groups
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2018
%P 253-268
%V 52
%N 2-3-4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2018017/
%R 10.1051/ita/2018017
%G en
%F ITA_2018__52_2-3-4_253_0
Salehi, Özlem; D’Alessandro, Flavio; Say, A.C. Cem. Language classes associated with automata over matrix groups. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 253-268. doi : 10.1051/ita/2018017. http://www.numdam.org/articles/10.1051/ita/2018017/

[1] G. Baumslag and J.E. Roseblade, Subgroups of direct products of free groups. J. Lond. Math. Soc. 2 (1984) 44–52 | DOI | MR | Zbl

[2] N.P. Brown and N. Ozawa, C*-algebras and finite-dimensional approximations, In Vol. 88. American Mathematical Society (2008) | MR | Zbl

[3] S. Cleary, M. Elder and G. Ostheimer, The word problem distinguishes counter languages. Preprint (2006) | arXiv

[4] J.M. Corson, Extended finite automata and word problems. Int. J. Algebra Comput. 15 (2005) 455–466 | DOI | MR | Zbl

[5] J. Dassow and V. Mitrana, Finite automata over free groups. Int. J. Algebra Comput. 10 (2000) 725–737 | DOI | MR | Zbl

[6] M. Elder, M. Kambites and G. Ostheimer, On groups and counter automata. Int. J. Algebra Comput. 18 (2008) 1345–1364 | DOI | MR | Zbl

[7] G.Z. Elston and G. Ostheimer, On groups whose word problem is solved by a counter automaton. Theoret. Comput. Sci. 320 (2004) 175–185 | DOI | MR | Zbl

[8] P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Real time counter machines, in Proc. of the 8th Annual Symposium on Switching and Automata Theory (SWAT 1967), FOCS ’67 1967 148–154 | DOI

[9] J.B. Fraleigh and V.J. Katz, A first course in abstract algebra. Addison-Wesley world student series. Addison-Wesley (2003)

[10] I. Glaister and J. Shallit, Automaticity Iii: Polynomial automaticity and context-free languages. Comput. Complex. 7 (1998) 371–387 | DOI | MR | Zbl

[11] S.A. Greibach, Remarks on blind and partially blind one-way multicounter machines. Theoret. Comput. Sci. 7 (1978) 311–324 | DOI | MR | Zbl

[12] R.I Grigorchuk, On growth in group theory, in vol. 1 of Proc. of the International Congress of Mathematicians (1990) 325–338 | MR | Zbl

[13] O.H. Ibarra, S.K. Sahni and C.E. Kim, Finite automata with multiplication. Theoret. Comput. Sci. 2 (1976) 271–294 | DOI | MR | Zbl

[14] M. Kambites, Formal languages and groups as memory. Commun. Algebra 37 (2009) 193–208 | DOI | MR | Zbl

[15] M.I. Kargapolov and J.I. Merzljakov, Fundamentals of the Theory of Groups. Springer-Verlag (1979) | DOI | MR | Zbl

[16] P. De La Harpe, Topics in geometric group theory. The University of Chicago Press, Chicago (2000) | MR | Zbl

[17] R.C. Lyndon and P.E. Schupp, Combinatorial . Springer-Verlag (1977)

[18] V. Mitrana and R. Stiebe, The accepting power of finite automata over groups, in New Trends in Formal Languages. Springer-Verlag (1997) 39–48 | DOI | MR

[19] E. Render, Rational monoid and semigroup automata. Ph.D. thesis, University of Manchester (2010)

[20] S. Żak, A Turing machine time hierarchy. Theoret. Comput. Sci. 26 (1983) 327–333 | DOI | MR | Zbl

[21] G. Zetzsche, Silent transitions in automata with storage, in International Colloquium on Automata, Languages, and Programming. Springer, Berlin, Heidelberg (2013) 434–445 | MR | Zbl

Cité par Sources :