Randomized generation of error control codes with automata and transducers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 169-184.

We introduce the concept of an -maximal error-detecting block code, for some parameter in (0,1), in order to formalize the situation where a block code is close to maximal with respect to being error-detecting. Our motivation for this is that it is computationally hard to decide whether an error-detecting block code is maximal. We present an output-polynomial time randomized algorithm that takes as input two positive integers N, ℓ and a specification of the errors permitted in some application, and generates an error-detecting, or error-correcting, block code of length ℓ that is 99%-maximal, or contains N words with a high likelihood. We model error specifications as (nondeterministic) transducers, which allow one to represent any rational combination of substitution and synchronization errors. We also present some elements of our implementation of various error-detecting properties and their associated methods. Then, we show several tests of the implemented randomized algorithm on various error specifications. A methodological contribution is the presentation of how various desirable error combinations can be expressed formally and processed algorithmically.

DOI : 10.1051/ita/2018015
Classification : 68Q45, 68W20, 94A40, 94B25
Mots-clés : Randomized algorithm, output polynomial time algorithm, error control codes, maximal codes, synchronization errors, combinatorial channels
Konstantinidis, Stavros 1 ; Moreira, Nelma 1 ; Reis, Rogério 1

1
@article{ITA_2018__52_2-3-4_169_0,
     author = {Konstantinidis, Stavros and Moreira, Nelma and Reis, Rog\'erio},
     editor = {Bordihn, Henning and Nagy, Benedek and Vaszil, Gy\"orgy},
     title = {Randomized generation of error control codes with automata and transducers},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {169--184},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2-3-4},
     year = {2018},
     doi = {10.1051/ita/2018015},
     mrnumber = {3915308},
     zbl = {1423.68260},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2018015/}
}
TY  - JOUR
AU  - Konstantinidis, Stavros
AU  - Moreira, Nelma
AU  - Reis, Rogério
ED  - Bordihn, Henning
ED  - Nagy, Benedek
ED  - Vaszil, György
TI  - Randomized generation of error control codes with automata and transducers
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2018
SP  - 169
EP  - 184
VL  - 52
IS  - 2-3-4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2018015/
DO  - 10.1051/ita/2018015
LA  - en
ID  - ITA_2018__52_2-3-4_169_0
ER  - 
%0 Journal Article
%A Konstantinidis, Stavros
%A Moreira, Nelma
%A Reis, Rogério
%E Bordihn, Henning
%E Nagy, Benedek
%E Vaszil, György
%T Randomized generation of error control codes with automata and transducers
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2018
%P 169-184
%V 52
%N 2-3-4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita/2018015/
%R 10.1051/ita/2018015
%G en
%F ITA_2018__52_2-3-4_169_0
Konstantinidis, Stavros; Moreira, Nelma; Reis, Rogério. Randomized generation of error control codes with automata and transducers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 169-184. doi : 10.1051/ita/2018015. http://www.numdam.org/articles/10.1051/ita/2018015/

[1] A. Almeida, M. Almeida, J. Alves, N. Moreira and R. Reis, FAdo and GUItar: Tools for automata manipulation and visualization. In Proc. of CIAA 2009, Sydney, Australia, edited by S. Maneth. Vol. 5642 of Lecture Notes in Computer Science. Springer-Verlag (2009) 65–74

[2] J. Berstel, Transductions and Context-Free Languages.B.G. Teubner, Stuttgart (1979) | DOI | MR | Zbl

[3] E.Z. Chen, Computer construction of quasi-twisted two-weight codes. In Sixth International Workshop on Optimal Codes and Related Topics (2009) 62–68

[4] K. Dudzinski and S. Konstantinidis, Formal descriptions of code properties: decidability, complexity, implementation. Int. J. Found. Comput. Sci. 23 (2012) 67–85 | DOI | MR | Zbl

[5] Fado, Tools for formal languages manipulation. Accessed in January 2016. Available at: http://fado.dcc.fc.up.pt/.

[6] D.B. Jaffe, Optimal binary linear codes of length ≤ 30. In Proc. ofthe 1998 International Symposium on Information Theory (1998) 17 | DOI | MR | Zbl

[7] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, On generating all maximal independent sets. Inf. Process. Lett. 27 (1988) 119–123 | DOI | MR | Zbl

[8] H. Jürgenesen and S.S. Yu, Solid codes. Elektron. Informationsverarbeit. Kybernetik. 26 (1990) 563–574 | Zbl

[9] M.M. Kanté, V. Limouzy, A. Mary and L. Nourine, On the enumeration of minimal dominating sets and related notions. SIAM J. Discrete Math. 28 (2014) 1916–1929 | DOI | MR | Zbl

[10] S. Konstantinidis, C. Meijer, N. Moreira and R. Reis, Implementation of code properties via transducers. In Proc. of CIAA 2016, edited by Y.-S. Han and K. Salomaa. Vol. 9705 in Lecture Notes in Computer Science. Springer-Verlag (2016) 189–201 | MR

[11] S. Konstantinidis and P.V. Silva, Maximal error-detecting capabilities of formal languages. J. Autom. Lang. Comb. 13 (2008) 55–71 | MR | Zbl

[12] C.W.H. Lam, Finding error-correcting codes using computers. In Information Security, Coding Theory and Related Combinatorics (2011) 278–284 | MR | Zbl

[13] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Sov. Physi. Dokl. 10 (1966) 707–710 | MR | Zbl

[14] V.I. Levenshtein, Maximum number of words in codes without overlaps. Probl. Inform. Trans. 6 (1973) 355–357

[15] V.I. Levenshtein, Combinatorial problems motivated by comma-free codes. J. Comb. Des. 12 (2004) 184–196 | DOI | MR | Zbl

[16] H. Lewis and C.H. Papadimitriou, Elements of the Theory of Computation, 2nd ed. Prentice Hall (1998) | Zbl

[17] S. Lin and D.J. Costello Jr Error control coding, 2nd ed. Pearson (2005)

[18] Z. Liu and M. Mitzenmacher, Codes for deletion and insertion channels with segmented errors. In Proc. of ISIT, Nice, France, 2007 (2007) 846–849

[19] F.J. Macwilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes. Amsterdam (1977) | MR | Zbl

[20] H. Mercier, V. Bhargava and V. Tarokh, A survey of error-correcting codes for channels with symbol synchronization errors. IEEE Commun. Surv. Tutor. 12 (2010) 87–96 | DOI

[21] M. Mitzenmacher and E. Upfal, Probability and Computing. Cambridge University Press (2005) | DOI | MR | Zbl

[22] F. Paluncic, K. Abdel-Ghaffar and H. Ferreira, Insertion/deletion detecting codes and the boundary problem. IEEE Trans. Inf. Theory 59 (2013) 5935–5943 | DOI | MR | Zbl

[23] V.S. Pless and W.C. Huffman, editors. Handbook of Coding Theory. Elsevier (1998)

[24] Pypy, Pypy, a fast, compliant alternative implementation of the Python language. Available at: http://pypy.org (2017)

[25] G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Vol. I. Springer-Verlag, Berlin (1997) | MR | Zbl

[26] C.E. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949) | MR | Zbl

[27] H.J. Shyr, Free Monoids and Languages, 2nd ed. Hon Min Book Company, Taichung (1991) | MR | Zbl

[28] T.G. Swart and H.C. Ferreira, A note on double insertion/deletion correcting codes. IEEE Trans. Inf. Theory 49 (2003) 269–273 | DOI | MR | Zbl

Cité par Sources :